Operational monitoring of vegetation and land surface change over large areas can make good use of satellite sensors that measure radiance reflected from the Earth’s surface. Monitoring programs use multiple images for complete spatial coverage over time. Accurate retrievals of vegetation cover and vegetation change estimates can be hampered by variation, in both space and time, in the measured radiance, caused by atmospheric conditions, topography, sensor location, and sun elevation. In order to obtain estimates of cover that are comparable between images, and to retrieve accurate estimates of change, these sources of variation must be removed. In this paper we present a preprocessing scheme for minimising atmospheric, topographic and bi-directional reflectance effects on Landsat-5 TM, Landsat-7 ETM+ and SPOT-5 HRG imagery. The approach involves atmospheric correction to compute surface-leaving radiance, and bi-directional reflectance modelling to remove the effects of topography and angular variation in reflectance. The bi-directional reflectance model has been parameterised for eastern Australia, but the general approach is more widely applicable. The result is surface reflectance standardised to a fixed viewing and illumination geometry. The method can be applied to the entire record for these instruments, without intervention, which is of increasing importance with the increased availability of long term image archives. Validation shows that the corrections improve the estimation of reflectance at any given angular configuration, thus allowing the removal from the reflectance signal of much variation due to factors independent of the land surface. The method has been used to process over 45,000 Landsat-5 TM and Landsat-7 ETM+ scenes and 2,500 SPOT-5 scenes, over eastern Australia, and is now in use in operational monitoring programs.
References
[1]
Department of Environment and Resource Management. Land Cover Change in Queensland 2008–09: A Statewide Landcover and Trees Study (SLATS) Report. Technical Report ISBN 978-1-7423-0904; Queensland Department of Environment and Resource Management: Brisbane, QLD, Australia, 2010.
[2]
Office of Environment and Heritage. NSW Annual Report on Native Vegetation. Technical Report OEH 2011/0685;; New South Wales Office of Environment and Heritage: Sydney South, NSW, Australia, 2010.
[3]
Scarth, P.; Gillingham, S.; Muir, J. Assimilation of Spectral Information and Temporal History into a Statewide Woody Cover Change Classification. Proceedings of 14th Australasian Remote Sensing and Photogrammetry Conference, Darwin, NT, Australia, 29 September–3 October 2008.
[4]
Armston, J.D.; Denham, R.J.; Danaher, T.J.; Scarth, P.F.; Moffiet, T.N. Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery. J. Appl. Remote Sens 2009, 3, 033540–033567, doi:10.1117/1.3216031.
[5]
Mellor, A.; Haywood, A.; Jones, S.; Wilkes, P. Forest Classification Using Random Forests with Multisource Remote Sensing and Ancillary GIS Data. Proceedings of 16th Australian Remote Sensing and Photogrammetry Conference, Melbourne, VIC, Australia, 27–28 August 2012.
[6]
Song, C.; Woodcock, C. Monitoring forest succession with multitemporal Landsat images: factors of uncertainty. IEEE Trans. Geosci. Remote Sens 2003, 41, 2557–2567, doi:10.1109/TGRS.2003.818367.
[7]
Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ 2012, 122, 66–74, doi:10.1016/j.rse.2011.08.024.
[8]
Markham, B.L.; Helder, D.L. Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens. Environ 2012, 122, 30–40, doi:10.1016/j.rse.2011.06.026.
[9]
Porez, F.; Sylvander, S.; Delvit, J.; Lebegue, L.; Leger, D.; Meygret, A. SPOT Image Quality Performances. Technical Report C443-NT-0-296-CN;; Centre National d’Etudes Spatiales: Paris, France, 2008.
[10]
Masek, J.; Vermote, E.; Saleous, N.; Wolfe, R.; Hall, F.; Huemmrich, K.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett 2006, 3, 68–72, doi:10.1109/LGRS.2005.857030.
[11]
Schroeder, T.A.; Cohen, W.B.; Song, C.; Canty, M.J.; Yang, Z. Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sens. Environ 2006, 103, 16–26, doi:10.1016/j.rse.2006.03.008.
[12]
Vicente-Serrano, S.M.; Perez-Cabello, F.; Lasanta, T. Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images. Remote Sens. Environ 2008, 112, 3916–3934, doi:10.1016/j.rse.2008.06.011.
[13]
Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ 2008, 112, 3112–3130, doi:10.1016/j.rse.2008.03.009.
[14]
Li, F.; Jupp, D.; Reddy, S.; Lymburner, L.; Mueller, N.; Tan, P.; Islam, A. An Evaluation of the Use of Atmospheric and BRDF Correction to Standardize Landsat Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 257–270, doi:10.1109/JSTARS.2010.2042281.
[15]
Li, F.; Jupp, D.L.; Thankappan, M.; Lymburner, L.; Mueller, N.; Lewis, A.; Held, A. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sens. Environ 2012, 124, 756–770, doi:10.1016/j.rse.2012.06.018.
[16]
Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ 2012, 122, 2–10, doi:10.1016/j.rse.2012.01.010.
[17]
Vermote, E.; Tanre, D.; Deuze, J.; Herman, M.; Morcette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens 1997, 35, 675–686, doi:10.1109/36.581987.
[18]
Martonchik, J.V.; Bruegge, C.J.; Strahler, A.H. A review of reflectance nomenclature used in remote sensing. Remote Sens. Rev 2000, 19, 9–20, doi:10.1080/02757250009532407.
[19]
Ziemke, J.; Chandra, S.; Duncan, B.; Froidevaux, L.; Bhartia, P.; Levelt, P.; Waters, J. Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res 2006, 111, D19303, doi:10.1029/2006JD007089.
[20]
Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw 2001, 16, 309–330, doi:10.1016/S1364-8152(01)00008-1.
[21]
Gillingham, S.; Flood, N.; Gill, T.; Mitchell, R. Limitations of the dense dark vegetation method for aerosol retrieval under Australian conditions. Remote Sens. Lett 2012, 3, 67–76, doi:10.1080/01431161.2010.533298.
[22]
Gillingham, S.; Flood, N.; Gill, T. On determining appropriate aerosol optical depth values for atmospheric correction of satellite imagery for biophysical parameter retrieval: requirements and limitations under Australian conditions. Int. J. Remote Sens 2013, 34, 2089–2100, doi:10.1080/01431161.2012.738945.
[23]
Farr, Tom G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; Seal, D.; Shaffer, S.; Shimada, J.; Umland, J.; Werner, M.; Oskin, M.; Burbank, D.; Alsdorf, D. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004, doi:10.1029/2005RG000183.
[24]
Gallant, J.; Read, A. Enhancing the SRTM Data for Australia. Proceedings of Geomorphometry 2009, Zurich, Switzerland, 31 August–2 September 2009.
[25]
GeoscienceAustralia. 1 Second SRTM Derived Digital Elevation Models User Guide. Version 1.0;; GeoscienceAustralia: Canberra, ACT, Australia, 2010.
[26]
Strugnell, N.C.; Lucht, W. An algorithm to infer continental-scale Albedo from AVHRR data, land cover class, and field observations of typical BRDFs. J. Climate 2001, 14, 1360–1376, doi:10.1175/1520-0442(2001)014<1360:AATICS>2.0.CO;2.
[27]
Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ 2002, 83, 135–148, doi:10.1016/S0034-4257(02)00091-3.
[28]
Shepherd, J.; Dymond, J. Correcting satellite imagery for the variance of reflectance and illumination with topography. Int. J. Remote Sens 2003, 24, 3503–3514, doi:10.1080/01431160210154029.
[29]
Dozier, J.; Frew, J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Remote Sens 1990, 28, 963–969, doi:10.1109/36.58986.
[30]
Jones, K.H. A comparison of algorithms used to compute hill slope as a property of the DEM. Comput. Geosci 1998, 24, 315–323, doi:10.1016/S0098-3004(98)00032-6.
[31]
Dymond, J.; Shepherd, J. Correction of the topographic effect in remote sensing. IEEE Trans. Geosci. Remote Sens 1999, 37, 2618–2619, doi:10.1109/36.789656.
[32]
Privette, J.L.; Eck, T.F.; Deering, D.W. Estimating spectral albedo and nadir reflectance through inversion of simple BRDF models with AVHRR/MODIS-like data. J. Geophys. Res 1997, 102, 29529–29542, doi:10.1029/97JD01215.
[33]
Salomon, J.; Schaaf, C.; Strahler, A.; Gao, F.; Jin, Y. Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms. IEEE Trans. Geosci. Remote Sens 2006, 44, 1555–1565, doi:10.1109/TGRS.2006.871564.
[34]
Strahler, A.; Muller, J. MODIS BRDF/Albedo Product: Algorithm Theoretical Basis Document Version 5.0, 1999.
[35]
Jones, E.; Oliphant, T.; Peterson, P.. others. SciPy: Open Source Scientific Tools for Python, 2001. Available online: http://www.scipy.org/ (accessed on 9 November 2012).
[36]
Guyot, G.; Gu, X.F. Effect of radiometric corrections on NDVI-determined from SPOT-HRV and Landsat-TM data. Remote Sens. Environ 1994, 49, 169–180, doi:10.1016/0034-4257(94)90012-4.