全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Discovering opinion leaders for medical topics using news articles

DOI: 10.1186/2041-1480-3-2

Full-Text   Cite this paper   Add to My Lib

Abstract:

We employed a Conditional Random Field algorithm to extract three categories of entities from health-related new articles: Person, Organization and Location. We used the latter two to disambiguate polysemy and synonymy for the person names, used simple rules to identify the subject experts, and then applied social network analysis techniques to discover the opinion leaders among them based on their media presence. A network was created by linking each pair of subject experts who are mentioned together in an article. The social network analysis metrics (including centrality metrics such as Betweenness, Closeness, Degree and Eigenvector) are used for ranking the subject experts based on their power in information flow.We extracted 734,204 person mentions from 147,528 news articles related to obesity from January 1, 2007 through July 22, 2010. Of these, 147,879 mentions have been marked as subject experts. The F-score of extracting person names is 88.5%. More than 80% of the subject experts who rank among top 20 in at least one of the metrics could be considered as opinion leaders in obesity.The analysis of the network of subject experts with media presence revealed that an opinion leader might have fewer mentions in the news articles, but a high network centrality measure and vice-versa. Betweenness, Closeness and Degree centrality measures were shown to supplement frequency counts in the task of finding subject experts. Further, opinion leaders missed in scientific publication network analysis could be retrieved from news articles.We are witnessing an exponential increase in biomedical research citations in PubMed. However, Balas and Boren [1] estimated that translating biomedical discoveries into practical treatments takes around 17 years, and 86% of research knowledge is lost during this transition through peer-review process, bibliographic indexing and meta-analysis. At the other end, pharmaceutical companies spend on an average 24% of their total marketing budget

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133