: The measurement of landslide superficial displacement often represents the most effective method for defining its behavior, allowing one to observe the relationship with triggering factors and to assess the effectiveness of the mitigation measures. Persistent Scatterer Interferometry (PSI) represents a powerful tool to measure landslide displacement, as it offers a synoptic view that can be repeated at different time intervals and at various scales. In many cases, PSI data are integrated with in situ monitoring instrumentation, since the joint use of satellite and ground-based data facilitates the geological interpretation of a landslide and allows a better understanding of landslide geometry and kinematics. In this work, PSI interferometry and conventional ground-based monitoring techniques have been used to characterize and to monitor the Santo Stefano d’Aveto landslide located in the Northern Apennines, Italy. This landslide can be defined as an earth rotational slide. PSI analysis has contributed to a more in-depth investigation of the phenomenon. In particular, PSI measurements have allowed better redefining of the boundaries of the landslide and the state of activity, while the time series analysis has permitted better understanding of the deformation pattern and its relation with the causes of the landslide itself. The integration of ground-based monitoring data and PSI data have provided sound results for landslide characterization. The punctual information deriving from inclinometers can help in defining the actual location of the sliding surface and the involved volumes, while the measuring of pore water pressure conditions or water table level can suggest a correlation between the deformation patterns and the triggering factors.
References
[1]
Mantovani, F.; Soeters, R.; van Westen, C. Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 1996, 15, 213–225.
[2]
Farina, P.; Colombo, D.; Fumagalli, A.; Marks, F.; Moretti, S. Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng. Geol 2006, 88, 200–217.
[3]
Corominas, J.; Moya, J.; Lloret, A.; Gili, J.A.; Angeli, M.G.; Pasuto, A.; Silavno, S. Measurement of landslide displacements using a wire extensometer. Eng. Geol 2000, 55, 149–166.
[4]
Angeli, M.; Pasuto, A.; Silvano, S. A critical review of landslide monitoring experiences. Eng. Geol 2000, 55, 133–147.
[5]
Gili, J.A.; Corominas, J.; Rius, J. Using Global Positioning System techniques in landslide monitoring. Eng. Geol 2000, 55, 167–192.
[6]
Cotecchia, V.; Grassi, D.; Merenda, L. Fragilità dell’area urbana occidentale di Ancona dovuta a movimenti di massa profondi e superficiali ripetutisi nel 1982. Geologia Applicata e Idrogeologia 1995, 30, 633–657.
[7]
Cotecchia, V. La Grande Frana di Ancona: La Stabilità del Suolo in Italia: Zonazione Sismica-Frane. Proceedings of Atti dei Convegni Lincei, 1997, Roma, Italy, 30–31 May 1996; pp. 187–259.
[8]
Kaab, A. Photogrammetry for early recognition of high mountain hazards: New techniques and applications. Phys. Chem. Earth 2000, 25, 765–770.
[9]
Bitelli, G.; Dubbini, M.; Zanutta, A. Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci 2004, 35, 246–251.
[10]
Fanti, R.; Gigli, G.; Lombardi, L.; Tapete, D.; Canuti, P. Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides 2012, 5, 1–12.
[11]
Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res 1989, 94, 9183–9191.
[12]
Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys 1998, 36, 441–500.
[13]
Zebker, H.A.; Goldstein, R.M. Mapping from interferometric synthetic aperture radar observations. J. Geophys. Res 1986, 91, 4993–4999.
[14]
Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides: Investigation and Mitigation, Special Report 247-Transportation Research Board, National Research Council; Turner, A.K., Schuster, R.L., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 36–75.
[15]
Lu, P.; Casagli, N.; Catani, F.; Tofani, V. Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int. J. Remote Sens 2012, 33, 466–489.
[16]
Righini, G.; Pancioli, V.; Casagli, N. Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int. J. Remote Sens 2012, 33, 2068–2096.
[17]
Tofani, V.; Segoni, S.; Agostini, A.; Catani, F.; Casagli, N. Technical note: Use of remote sensing for landslide studies in Europe. Nat. Hazards Earth Syst. Sci 2013, 13, 1–12.
[18]
Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using Permanent Scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens 2000, 38, 2202–2212.
[19]
Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens 2001, 39, 8–20.
[20]
Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng. Geol 2003, 68, 3–14.
[21]
Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR?. IEEE Trans. Geosci. Remote Sens 2011, 99, 1–1.
[22]
Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett 2004, 31, L23611.
[23]
Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. J. Geophys. Res 2007, 112, B07407.
[24]
Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric Point Target Analysis for Deformation Mapping. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS’03), Toulouse, Francia, 21–25 July 2003; pp. 4362–4364.
[25]
Strozzi, T.; Wegmuller, U.; Keusen, H.R.; Graf, K.; Wiesmann, A. Analysis of the terrain displacement along a funicular by SAR interferometry. IEEE Trans. Geosci. Remote Sens 2006, 3, 15–18.
[26]
Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens 2006, 41, 2243–2253.
[27]
Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small baseline approach for investigating deformation on full resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens 2004, 42, 1377–1386.
[28]
Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens 2003, 40, 2375–2383.
[29]
Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval. Remote Sens. Environ 2006, 102, 195–210.
[30]
Crosetto, M.; Biescas, E.; Duro, J.; Closa, J.; Arnaud, A. Generation of advanced ERS and Envisat interferometric SAR products using the Stable Point Network technique. Photogramm. Eng. Remote Sensing 2008, 74, 443–451.
[31]
Herrera, G.; Notti, D.; Garcia-Davalillo, J.C.; Mora, O.; Cooksley, G.; Sanchez, M.; Arnaud, A.; Crosetto, M. Analysis with C- and X-band satellite SAR data of the Portalet landslide area. Landslides 2011, 8, 195–206.
[32]
Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F. A New Method for Identification and Analysis of Persistent Scatterers in Series of SAR Images. Proceedings of IEEE International Geoscience & Remote Sensing Symposium (IGARSS’08), Boston, MA, USA, 6–11 July 2008; pp. 449–452.
[33]
Perissin, D.; Wang, T. Repeat-pass SAR interferometry with partially coherent targets. IEEE Trans. Geosci. Remote Sens 2012, 50, 271–280.
[34]
Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol 2006, 88, 173–199.
[35]
Canuti, P.; Casagli, N.; Ermini, L.; Fanti, R.; Farina, P. Landslide activity as a geoindicator in Italy: Signifcance and new perspectives from remote sensing. Environ. Geol 2004, 45, 907–919.
[36]
Crosetto, M.; Monserrat, O.; Cuevas, M.; Crippa, B. Spaceborne differential SAR interferometry: data analysis tools for deformation measurement. Remote Sens 2011, 3, 305–318.
[37]
Rott, H. Requirements and Applications of Satellite Techniques for Monitoring Slope Instability in Alpine Areas. Proceedings of Workshop on Risk Mitigation of Slope Instability, Ispra, Italy, 30 September–1 October 2004.
[38]
Paganini, M. The Use of Space-Borne Sensors for the Monitoring of Slope Instability: Present Potentialities and Future Opportunities. Proceedings of Workshop on Risk Mitigation of Slope Instability, Ispra, Italy, 30 September–1 October 2004.
[39]
Rott, H.; Mayer, C.; Siegel, A. On the Operational Potential of SAR Interferometry for Monitoring Mass Movements in Alpine Areas. Proceedings of the 3rd European Conference on Synthetic Aperture Radar (EUSAR 2000), Munich, Germany, 23–25 May 2000; pp. 43–46.
[40]
Refice, A.; Guerriero, L.; Bovenga, F.; Wasowski, J.; Atzori, S.; Ferrari, R.; Marsella, M. Detecting landslide activity by SAR interferometry. Proceeding of ERS-Envisat Symposium, Goteborg, Sweden, 16–20 October 2000.
[41]
Berardino, P.; Costantini, M.; Franceschetti, G.; Iodice, A.; Pietranera, L.; Rizzo, V. Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Eng. Geol 2003, 68, 31–51.
[42]
Singhroy, V.; Molch, K. Characterizing and monitoring rockslides from SAR techniques. Adv. Space Res 2004, 33, 290–295.
[43]
Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thüring, M.; Zilger, J.; Wiesmann, A.; Wegmüller, U.; Werner, C. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2005, 2, 193–201.
[44]
Meisina, C.; Zucca, F.; Conconi, F.; Verri, F.; Fossati, D.; Ceriani, M.; Allievi, J. Use of permanent scatterers technique for large-scale mass movement investigation. Quatern. Int 2007, 171–172, 90–107.
[45]
Fornaro, G.; Pauciullo, A.; Serafino, F. Deformation Monitoring over large areas with Multipass Differential SAR Interferometry: A new approach based on the use of Spatial Differences. Int. J. Remote Sens 2009, 30, 1455–1478.
[46]
Prati, C.; Ferretti, A.; Perissin, D. Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. J. Geodyn 2010, 49, 161–170.
[47]
Peyret, M.; Djamour, Y.; Rizza, M.; Ritz, J.F.; Hurtrez, J.E.; Goudarzi, M.A.; Nankali, H.; Chèry, J.; Le Dortz, K.; Uri, F. Monitoring of a large slow Kahrod landslide in Alborz mounatin range (Iran) by GPS and SAR interferometry. Eng. Geol 2008, 100, 131–14.
[48]
Pancioli, V.; Raetzo, H.; Campolmi, T.; Casagli, N. Terrafirma Landslide Services for Europe based on Space-borne InSAR Data. Proceedings of the First World Landslide Forum, Tokyo, Japan, 18–21 November 2008; pp. 81–84.
[49]
Tofani, V.; Catani, F.; Pancioli, V.; Moretti, S.; Casagli, N. Integration of PSI Technique and Conventional Ground-Based Methods for Characterization and Monitoring of Santo Stefano d’Aveto Landslide (Central Italy). Proceedings of the Mountain Risks: bringing Science to Society, Florence, Italy, 24–26 November 2012; pp. 301–330.
[50]
Strozzi, T.; Delaloye, R.; K??b, A.; Ambrosi, C.; Perruchoud, E.; Wegmüller, U. Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J. Geophys. Res 2010, 115, F1.
[51]
Liao, M.S.; Tang, J.; Wang, T.; Balz, T.; Zhang, L. Landslide monitoring with high-resolution SAR data in the Three Gorges region. Sci. China Earth Sci 2012, 55, 590–601.
[52]
Regione Liguria-Carta Geologica Regionale (CARG) sc. 1:25000-tav. 215.4-S. Stefano D’Aveto (2006). Availableonline: http://www.cartografia.regione.liguria.it/templateFogliaRC.asp?itemID=30208&level=3&label=INFORMAZIONI%20GEOSCIENTIFICHE (accessed on 30 November 2012).
[53]
Sorriso Valvo, M. Landslide Risk Assessment in Italy. Landslide Hazard and Risk; Glade, T., Anderson, M., Crozier, M.J., Eds.; John Wiley & Sons: Chichester, UK, 2005; pp. 699–732.
[54]
Raspini, F.; Cigna, F.; Moretti, S. Multi-temporal mapping of land subsidence at basin scale exploiting Persistent Scatterer Interferometry: Case study of Gioia Tauro plain (Italy). J. Maps 2012, 8, 514–524.
[55]
Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Musazzi, S.; Novali, F.; Prati, C.; Rocca, F. Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Trans. Geosci. Remote Sens 2007, 45, 1142–1153.
[56]
Ng, A.H.-M.; Ge, L.; Zhang, K.; Li, X. Monitoring ground deformation in Beijing, China with Persistent Scatterer SAR Interferometry. J. Geodesy 2012, 86, 375–392.
[57]
Fialko, Y.; Simons, M.; Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw 7.1 Hector Mine Earthquake, California, from space geodetic observations. Geophys. Res. Lett 2001, 28, 3063–3066.
[58]
Calò, F.; Calcaterra, D.; Iodice, A.; Parise, M.; Ramondini, M. Assessing the activity of a large landslide in southern Italy by ground-monitoring and SAR interferometric techniques. Int. J. Remote Sens 2012, 33, 3512–3530.
[59]
Raucoules, D.; Bourgine, B.; Michele, M.; Le Gozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M.; et al. Validation and intercomparison of persistent scatterers interferometry: PSIC4 project results. J. Appl. Geophys 2009, 68, 335–347.
[60]
Cigna, F.; Del Ventisette, C.; Liguori, V.; Casagli, N. Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes. Nat. Hazard. Earth Sys. Sci 2011, 11, 865–881.
[61]
Cigna, F.; Bianchini, S.; Casagli, N. How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides 2012, 5, 1–17.