The objective of this study is to understand the effect of landslides on the drainage network within the area of interest. We thus test the potential of rivers to record the intensity of landslides that affected their courses. The study area is located within the Zagros orogenic belt along the border between Iraq and Iran. We identified 280 landslides through nine QuickBird scenes using visual photo-interpretation. The total landslide area of 40.05 km 2 and their distribution follows a NW–SE trend due to the tectonic control of main thrust faults. We observe a strong control of the landslides on the river course. We quantify the relationship between riverbed displacement and mass wasting occurrences using landslide sizes versus river offset and hypsometric integrals. Many valleys and river channels are curved around the toe of landslides, thus producing an offset of the stream which increases with the landslide area. The river offsets were quantified using two geomorphic indices: the river with respect to the basin midline (F b); and the offset from the main river direction (F d). Hypsometry and stream offset seem to be correlated. In addition; the analysis of selected river courses may give some information on the sizes of the past landslide events and therefore contribute to the hazard assessment.
References
[1]
Blasio, F.V.D. Introduction to the Physics of Landslides; Springer: New York, NY, USA, 2011.
[2]
Luckman, P.G.; Gibson, R.D.; Derose, R.C. Landslide erosion risk to New Zealand pastoral steeplands productivity. Land Degradation and Development 1999, 10, 49–65.
[3]
Ouimet, W.B. Landslides associated with the May 12, 2008 Wenchuan earthquake: Implications for the erosion and tectonic evolution of the Longmen Shan. Tectonophysics 2010, 491, 244–252.
[4]
Larsen, I.J.; Montgomery, D.R.; Korup, O. Landslide erosion controlled by hillslope material. Nature Geosci 2010, 3, 247–251.
[5]
Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 5th ed ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2004.
[6]
Petley, D.N.; Rosser, N.J.; Karim, D.; Wali, S.; Ali, N.; Nasab, N.; Shaban, K. Non-Seismic Landslide Hazards along the Himalayan Arc. In Geologically Active; Willians, A.L., Pinches, G.M., Chin, C.Y., McMorran, T.J., Massey, C.I., Eds.; CRC Press: London, UK, 2010; pp. 143–154.
[7]
Cui, P.; Dang, C.; Zhuang, J.-Q.; You, Y.; Chen, X.-Q.; Scott, K.M. Landslide-dammed lake at Tangjiashan, Sichuan province, China (triggered by the Wenchuan Earthquake, May 12, 2008): Risk assessment, mitigation strategy, and lessons learned. Environ. Earth Sci 2012, 65, 1055–1065.
[8]
Howard-Williams, C.; Law, K.; Vincent, C.L.; Davies, J.; Vincent, W.F. Limnology of Lake Waikaremoana with special reference to littoral and pelagic primary producers. New Zealand Journal of Marine and Freshwater Research 1986, 20, 583–597.
[9]
Newnham, R.M.; Lowe, D.J.; Matthews, B.W. A late-Holocene and prehistoric record of environmental change from Lake Waikaremoana, New Zealand. The Holocene 1988, 8, 443–454.
[10]
Allan, J.C.; Stephenson, W.J.; Kirk, R.M.; Taylor, A. Lacustrine shore platforms at Lake Waikaremoana, North Island, New Zealand. Earth Surface Process. Landf 2002, 27, 207–220.
[11]
Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; US Geological Survey: Reston, VA, USA, 2008; p. 1325.
[12]
Schuster, R.L.; Alford, D. Usoi Landslide Dam and Lake Sarez, Pamir Mountains, Tajikistan. Environ. Eng. Geosci. 2004, X, 151–168.
[13]
Alford, D.; Schuster, R.L. Usoi Landslide Dam and Lake Sarez, An Assessment of Hazard and Risk in the Pamir Mountain, Tajikistan; UN: New York, NY, USA and Geneva, Switerland, 2000.
[14]
Risley, J.C.; Walder, J.S.; Denlinger, R.P. Usoi Dam wave overtopping and flood routing in the Bartang and Panj Rivers, Tajikistan. Natural Hazards 2006, 38, 375–390.
[15]
Risley, J.; Walder, J.; Denlinger, R. Usoi Dam Wave Overtopping and Flood Routing in the Bartang and Panj Rivers, Tajikistan; US Geological Survey: Reston, VA, USA, 2006; p. 29.
[16]
Evans, S.G.; Mugnozza, G.S.; Strom, A.; Hermanns, R.L. Landslides from Massive Rock Slope Failure; Springer: Dordrecht, The Netherlands, 2006; p. 49.
[17]
James, L.A. Tailings fans and valley-spur cutoffs created by hydraulic mining. Earth Surface Process. Landf 2004, 29, 869–882.
[18]
Miller, B.G.N.; Cruden, D.M. The Eureka River landslide and dam, Peace River Lowlands, Alberta. Can. Geotech. J 2002, 39, 863–878.
[19]
Morgan, A.J.; Paulen, R.C.; Slattery, S.R.; Froese, C.R. Geological Setting for Large Landslides at the Town of Peace River, Alberta. Open File Report 2012-04; Alberta Geological Survey: Edmonton, AB, Canada, 2012.
[20]
Miko?, M.; Brilly, M.; Fazarinc, R.; Ribi?i?, M. Strug landslide in W Slovenia: A complex multi-process phenomenon. Eng. Geol 2006, 83, 22–35.
[21]
Othus, S.M. Comparison of Landslides and Their Related Outburst Flood Deposits, Owyhee River, Southeastern Oregon. M.Sc. Thesis; Central Washington University, Ellensburg, WA, USA, 2008.
[22]
Imran, J.; Parker, G.; Pirmez, C. A nonlinear model of flow in meandering submarine and subaerial channels. Fluid Mech 1999, 400, 295–331.
[23]
Goudie, A.S. Encyclopedia of Geomorphology; Routledge Ltd: New York, NY, USA, 2006; p. 1156.
[24]
Alavi, M. Tectonics of Zagros Oroginic Belt of Iran: New data and interpretations. Tectonophysics 1994, 229, 221–238.
[25]
Alavi, M. Regional stratigraphy of the Zagros Fold—Thrust Belt of Iran and its proforeland evolution. Am. J. Sci 2004, 304, 1–20.
Nezhad, J.E. The Geological Map of Mahabad Quadrangles, Sheet NI-38-15 (map no. B4), Scale 1:250000; Geological Survey of Iran: Tehran, Iran, 1973.
[28]
Sisakian, V.K. The Geology of Erbil and Mahabad Quadrangle Sheet NJ-38-14 and NJ-38-15 (GM 5 and 6), Scale 1:250 000; Iraq Geological Survey: Baghdad, Iraq, 1998.
[29]
Sissakian, V.K.; Ahad, I.D.A.; Qambar, A.S. Series of Geological Hazards Map of Iraq Sulimanyah Quadrangle, Sheet No. NI-38-3, Scale 1:250 000; Iraq Geological Survey: Baghdad, Iraq, 2004.
[30]
Varnes, D.J. Slope Movement Types and Processes. In Special Report 176: Landslides: Analysis and Control; Schuster, R.L., Krizek, R.J., Eds.; Transportation and Road Research Board, National Academy of Science: Washington, DC, USA, 1978; pp. 11–33.
[31]
Dikau, R.; Brunsden, D.; Schrott, L.; Ibsen, M.L. Landslide Recognition: Identification, Movement and Causes; Wiley: Chichester, UK, 1996.
[32]
DigitalGlobe. Quickbird Imagery Products: Product Guide. Version 4.7.1; DigitalGlobe, Inc.: Longmont, CO, USA, 2006.
[33]
Abdulaziz, M.T.; Ibraheem, F.A.; Sebesta, J.; Hassan, A. The Lesser Zab River Basin Project, Photo-Engineering Geological and Geomorphological Mapping; Iraq Geological Survey: Baghdad, Iraq, 1983; p. 87.
[34]
Buday, T.; Suk, M. Report on the Geological Survey in NE Iraq between Halabjaand Qala′adiza; Iraq Geological Survey: Baghdad, Iraq, 1978.
[35]
Paver, G.L.; Consultant, M.B.; Scholtzh, H.C. Six Monthly Report July to December 1955; Iraq Geological Survey: Baghdad, Iraq, 1955; Volume 5.
Shahzad, F.; Gloaguen, R. Tecdem: A matlab based toolbox for tectonic geomorphology, Part 2: Surface dynamics and basin analysis. Comput. Geosci 2011, 37, 261–271.
[38]
Shahzad, F.; Gloaguen, R. Tecdem. A matlab based toolbox for tectonic geomorphology, Part 1: Drainage network preprocessing and streamprofile analysis. Comput. Geosci 2011, 37, 250–260.
[39]
Pe?rez-Peňa, J.V.; Azaňo?n, J.M.; A.Azor, Calhypso. An arcgis extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Comput. Geosci 2009, 35, 1214–1223.
Pike, R.J.; Wilson, S.E. Elevation-relief ratio, hypsometric integral and geomorphic area-altitude analysis. Geol. Soc. Am. Bull 1971, 82, 1079–1084.
[42]
Garrote, J.; Cox, R.T.; Swann, C.; Ellis, M. Tectonic geomorphology of the southeastern mississippi embayment in northern mississippi, USA. Geol. Soc. Am. Bull 2006, 118, 1160–1170.
[43]
Garrote, J.; Heydt, G.G.; Cox, R.T. Multi-stream order analyses in basin asymmetry: A tool to discriminate the influence of neotectonics in fluvial landscape development (madrid basin, central spain). Geomorphology 2008, 102, 130–144.
[44]
Mahmood, S.A.; Gloaguen, R. Appraisal of active tectonics in hindu kush: Insights from dem derived geomorphic indices and drainage analysis. Geosci. Front 2012, 3, 1–22.
[45]
Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, central italy. Geomorphology 1999, 31, 181–216.