全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improved Sampling for Terrestrial and Mobile Laser Scanner Point Cloud Data

DOI: 10.3390/rs5041754

Keywords: terrestrial, mobile, laser scanning, data reduction, sampling, distance distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

We introduce and test the performance of two sampling methods that utilize distance distributions of laser point clouds in terrestrial and mobile laser scanning geometries. The methods are leveled histogram sampling and inversely weighted distance sampling. The methods aim to reduce a significant portion of the laser point cloud data while retaining most characteristics of the full point cloud. We test the methods in three case studies in which data were collected using a different terrestrial or mobile laser scanning system in each. Two reference methods, uniform sampling and linear point picking, were used for result comparison. The results demonstrate that correctly selected distance-sensitive sampling techniques allow higher point removal than the references in all the tested case studies.

References

[1]  Vozikis, G.; Haring, A.; Vozikis, E.; Kraus, K. Laser Scanning: A New Method for Recording and Documentation in Archaeology. Proceedings of the Workshop-Archaeological Surveys, WSA1 Recording Methods, FIG Working Week, Athens, Greece, 22–27 May 2004; 4, p. 16.
[2]  Buckley, S.; Howell, J.; Enge, H.; Kurz, T. Terrestrial laser scanning in geology: Data acquisition, processing and accuracy considerations. J. Geol. Soc 2008, 165, 625–638.
[3]  Gross, H.; Thoennessen, U. Extraction of Lines from Laser Point Clouds. Proceedings of the Symposium of ISPRS Commission III: Photogrammetric Computer Vision PCV06, Bonn, Germany, 20–22 September 2006; 36, pp. 86–91.
[4]  Zhu, L.; Hyypp?, J.; Kukko, A.; Kaartinen, H.; Chen, R. Photorealistic building reconstruction from mobile laser scanning data. Remote Sens 2011, 3, 1406–1426.
[5]  Lim, E.; Suter, D. 3D terrestrial LIDAR classifications with super-voxels and multi-scale Conditional Random Fields. Comput. Aid. Des 2009, 41, 701–710.
[6]  Petrie, G. Mobile mapping systems: An introduction to the technology. GeoInformatics 2010, 13, 32–43.
[7]  Dassot, M.; Constant, T.; Fournier, M. The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Ann. For. Sci 2011, 68, 959–974.
[8]  Puttonen, E.; Jaakkola, A.; Litkey, P.; Hyypp?, J. Tree classification with fused mobile laser scanning and hyperspectral data. Sensors 2011, 11, 5158–5182.
[9]  Lemmens, M. Terrestrial laser scanners. GIM Int 2007, 21, 41–45.
[10]  Lemmens, M. Terrestrial laser scanners. GIM Int 2009, 23, 62–67.
[11]  Shan, J.; Toth, C.E. Topographic Laser Ranging and Scanning: Principles and Processing; CRC Press: Boca Raton, FL, USA, 2009.
[12]  Vosselman, G.; Maas, H.-G. Airborne and Terrestrial Laser Scanning; Whittles: Dunbeath, UK, 2010.
[13]  Foltz, L. Application: 3D laser scanner provides benefits for PennDOT bridge and rockface surveys. Prof. Surv 2000, 20, 22–28.
[14]  Manandhar, D.; Shibasaki, R. Vehicle-Borne Laser Mapping System (VLMS) for 3-D Urban GIS Database. Proceedings of the Computers in Urban Planning and Management (CUPUM) 2001, Honolulu, HI, USA, 18–21 July 2001; p. 10.
[15]  Stephan, A.; Heinz, I.; Mettenleiter, M.; Hartl, F.; Frohlich, C. Interactive Modelling of 3D-Environments. Proceedings of the 11th IEEE International Workshop on Robot and Human Interactive Communication, Berlin, Germany, 25–27 September 2002; pp. 530–535.
[16]  Strecha, C.; von Hansen, W.; van Gool, L.; Thoennessen, U. Multi-view Stereo and LiDAR for Outdoor Scene Modelling. Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Munich, Germany, 19–21 September 2007; 36, pp. 167–172.
[17]  Gaisecker, T. Pinchango Alto-3D Archaeology Documentation Using the Hybrid 3D Laser Scan System of RIEGL. In Recording, Modeling and Visualization of Cultural Heritage; Baltsavias, E., Gruen, A., van Gool, L., Pateraki, M., Eds.; Taylor & Francis: London, UK, 2006; pp. 459–464.
[18]  Boccardo, P.; Comoglio, G. New methodologies for architectural photogrammetric survey. Int. Arch. Photogramm. Remote Sens 2000, 33, 70–75.
[19]  Talaya, J.; Alamus, R.; Bosch, E.; Serra, A.; Kornus, W.; Baron, A. Integration of a Terrestrial Laser Scanner with GPS/IMU Orientation Sensors. Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004; 35, pp. 1049–1055.
[20]  FARO Inc. Designed for High Performance: The FARO Laser Scanner LS, Available online: http://www.faro.com/FaroIP/Files/File/Techsheets%20Download/SEA_Laserscanner840&880.pdf (accessed on 13 January 2013).
[21]  Optech Inc. Lynx Mobile Mapper: Summary Specification Sheet, Available online: http://www.optech.ca/pdf/LynxSpecSheet110309Web.pdf (accessed on 13 January 2013).
[22]  Leica GeoSystems AG. Leica ScanStation P20: Product Specifications, Available online: http://www.leica-geosystems.com/downloads123/hds/hds/ScanStationP20/brochures-datasheet/LeicaScanStationP20DATen.pdf (accessed on 13 January 2013).
[23]  FARO Inc. FARO Laser Scanner Focus 3D, Available online: http://www.faro.com/site/resources/share/944 (accessed on 13 January 2013).
[24]  RIEGL Gmbh. VZ-400: Datasheet, Available online: http://www.riegl.com/uploads/tx_pxpriegldownloads/10DataSheet_VZ-400_01-02-2013.pdf (accessed on 26 February 2013).
[25]  Litkey, P.; Puttonen, E.; Liang, X. Comparison of Point Cloud Data Reduction Methods in Single-Scan TLS for Finding Tree Stems in Forest. Proceedings of SilviLaser 2011, 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems, Hobart, Tasmania, Australia, 16–20 October 2011; pp. 626–635.
[26]  ASPRS. LAS Specification, Version 1.4-r11, Available online: http://www.asprs.org/a/society/committees/standards/LAS_1_4_r11.pdf (accessed on 13 January 2013).
[27]  Isenburg, M. LASzip: Lossless Compression of LiDAR Data, Available online: http://www.cs.unc.edu/~isenburg/lastools/download/laszip.pdf (accessed on 13 January 2013).
[28]  Mongus, D.; ?alik, B. Efficient method for lossless LiDAR data compression. Int. J. Remote Sens 2011, 32, 2507–2518.
[29]  Huber, D. The ASTM E57 file format for 3D imaging data exchange. Proc. SPIE 2011, doi:10.1117/12.876555.
[30]  Elseberg, J.; Borrmann, D.; Nuchter, A. Efficient Processing of Large 3D Point Clouds. Proceedings of the 2011 XXIII International Symposium on Information, Communication and Automation Technologies (ICAT), Sarajevo, Bosnia, 27–29 October 2011; pp. 1–7.
[31]  Schnabel, R.; Klein, R. Octree-Based Point-Cloud Compression. Proceedings of the IEEE/Eurographics Symposium on Point-Based Graphics, Boston, MA, USA, 29–30 July 2006; pp. 111–120.
[32]  Sim, J.Y.; Lee, S.U.; Kim, C.S. Construction of Regular 3D Point Clouds Using Octree Partitioning and Resampling. Proceedings of IEEE International Symposium on the Circuits and Systems, 2005 (ISCAS 2005), Kobe, Japan, 23–26 May 2005; pp. 956–959.
[33]  Laine, S.; Karras, T. Efficient sparse voxel octrees. IEEE Trans. Vis. Comput. Graph 2011, 17, 1048–1059.
[34]  Lichti, D.; Jamtsho, S. Angular resolution of terrestrial laser scanners. Photogramm. Rec 2006, 21, 141–160.
[35]  Pesci, A.; Teza, G.; Bonali, E. Terrestrial laser scanner resolution: Numerical simulations and experiments on spatial sampling optimization. Remote Sens 2011, 3, 167–184.
[36]  Song, H.; Feng, H.Y. A progressive point cloud simplification algorithm with preserved sharp edge data. Int. J. Adv. Manuf. Technol 2009, 45, 583–592.
[37]  Lee, K.; Woo, H.; Suk, T. Data reduction methods for reverse engineering. Int. J. Adv. Manuf. Technol 2001, 17, 735–743.
[38]  Mandow, A.; Martínez, J.; Reina, A.; Morales, J. Fast range-independent spherical subsampling of 3D laser scanner points and data reduction performance evaluation for scene registration. Pattern Recogn. Lett 2010, 31, 1239–1250.
[39]  Nüchter, A.; Surmann, H.; Lingemann, K.; Hertzberg, J.; Thrun, S. 6D SLAM with an Application in Autonomous Mine Mapping. Proceedings of 2004 IEEE International Conference on Robotics and Automation, 2004 (ICRA’04), New Orleans, LA, USA, 26 April–1 May 2004; 2, pp. 1998–2003.
[40]  Weisstein, E.W. “Disk Point Picking.” From MathWorld—A Wolfram Web Resource, Available online: http://mathworld.wolfram.com/DiskPointPicking.html (accessed on 3 January 2013).
[41]  Lehtom?ki, M.; Jaakkola, A.; Hyypp?, J.; Kukko, A.; Kaartinen, H. Performance analysis of a pole and tree trunk detection method for mobile laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2011, 38, 197–202.
[42]  Kukko, A.; Andrei, C.; Salminen, V.; Kaartinen, H.; Chen, Y.; R?nnholm, P.; Hyypp?, H.; Hyypp?, J.; Chen, R.; Haggrén, H.; et al. Road environment mapping system of the Finnish Geodetic Institute–FGI Roamer. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2007, 36, 241–247.
[43]  Lehtom?ki, M.; Jaakkola, A.; Hyypp?, J.; Kukko, A.; Kaartinen, H. Detection of vertical pole-like objects in a road environment using vehicle-based laser scanning data. Remote Sens 2010, 2, 641–664.
[44]  Kaartinen, H.; Hyypp?, J. EuroSDR Projects-Evaluation of Building Extraction. EuroSDR Official Publication No. 50;; EuroSDR: Frankfurt, Germany, 2006; pp. 9–110.
[45]  Jaakkola, A.; Hyypp?, J.; Kukko, A.; Yu, X.; Kaartinen, H.; Lehtom?ki, M.; Lin, Y. A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS J. Photogramm 2010, 65, 514–522.
[46]  Boulaassal, H.; Landes, T.; Grussenmeyer, P.; Tarsha-Kurdi, F. Automatic Segmentation of Building Facades Using Terrestrial Laser Data. Proceedings of ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 September 2007; 36, pp. 65–70.
[47]  Tang, P.; Huber, D.; Akinci, B.; Lipman, R.; Lytle, A. Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. Autom. Constr 2010, 19, 829–843.
[48]  Arachchige, N.H.; Perera, S.N.; Maas, H.G. Automatic processing of mobile laser scanner point clouds for building facade detection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B5, 187–192.
[49]  Jaakkola, A.; Hyypp?, J.; Hyypp?, H.; Kukko, A. Retrieval algorithms for road surface modelling using laser-based mobile mapping. Sensors 2008, 8, 5238–5249.
[50]  Belton, D.; Bae, K.H. Automating post-processing of terrestrial laser scanning point clouds for road feature surveys. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2010, 38, 74–79.
[51]  Rottensteiner, F. Advanced Methods for Automated Object Extraction from LiDAR in Urban Areas. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 5402–5405.
[52]  Wang, J.; Shan, J. Segmentation of LiDAR Point Clouds for Building Extraction. Proceedings American Society of Photogramm Remote Sensing Annual Conference, Baltimore, MD, USA, 9–13 March 2009; pp. 9–13.
[53]  Douglas, E.; Martel, J.; Cook, T.; Mendill, C.; Marshall, R.; Chakrabarti, S.; Strahler, A.; Schaaf, C.; Woodcock, C.; Liu, Z.; et al. A Dual-Wavelength Echidna Lidar for Ground-Based Forest Scanning. Proceedings of SilviLaser 2012: First Return, 12th International Conference on LiDAR Applications for Assessing Forest Ecosystems, Vancouver, BC, Canada, 16–19 September 2012; p. 361.
[54]  Gaulton, R.; Danson, F.; Pearson, G.; Lewis, P.; Disney, M. The Salford Advanced Laser Canopy Analyser (SALCA): A Multispectral Full Waveform LiDAR for Improved Vegetation Characterisation. Proceedings of the Remote Sensing and Photogrammetry Society Conference, Remote Sensing and the Carbon Cycle, London, UK, 5 May 2010.
[55]  Hakala, T.; Suomalainen, J.; Kaasalainen, S.; Chen, Y. Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt. Express 2012, 20, 7119–7127.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133