Many remote sensing applications are devoted to the agricultural sector. Representative case studies are presented in the special issue “Advances in Remote Sensing of Agriculture”. To complement the examples published within the special issue, a few main applications with regional to global focus were selected for this review, where remote sensing contributions are traditionally strong. The selected applications are put in the context of the global challenges the agricultural sector is facing: minimizing the environmental impact, while increasing production and productivity. Five different applications have been selected, which are illustrated and described: (1) biomass and yield estimation, (2) vegetation vigor and drought stress monitoring, (3) assessment of crop phenological development, (4) crop acreage estimation and cropland mapping and (5)?mapping of disturbances and land use/land cover (LULC) changes. Many other applications exist, such as precision agriculture and irrigation management (see other special issues of this journal), but were not included to keep the paper concise. The paper starts with an overview of the main agricultural challenges. This section is followed by a brief overview of existing operational monitoring systems. Finally, in the main part of the paper, the mentioned applications are described and illustrated. The review concludes with some key recommendations.
References
[1]
Food and Agriculture Organization of the United Nations (FAO). Global Strategy to Improve Agricultural and Rural Statistics. Report No. 56719-GB; FAO: Rome, Italy, 2011.
[2]
Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions of a cultivated planet. Nature 2011, 478, 337–342.
[3]
Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264.
[4]
Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, doi:10.1038/nature11420.
[5]
Jonathan Foley. How to Feed Nine Million and Keep the Planet too, Available online: http://www.newsecuritybeat.org/2011/10/jon-foley-how-to-feed-nine-billion-and-keep-the-planet-too/#.USI9VKV303k (accessed on 18 February 2013).
[6]
Becker-Reshef, I.; Justice, C.O.; Sullivan, M.; Vermote, E.F.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J.; et al. Monitoring global croplands with coarse resolution Earth observation: The Global Agriculture Monitoring (GLAM) project. Remote Sens 2010, 2, 1589–1609.
[7]
Kastens, J.H.; Kastens, T.L.; Kastens, D.L.A.; Price, K.P.; Martinko, E.A.; Lee, R.-Y. Image masking for crop yield forecasting using AVHRR NDVI time series imagery. Remote Sens. Environ 2005, 99, 341–356.
[8]
Zhang, P.; Anderson, B.; Tan, B.; Huang, D.; Myneni, R. Potential monitoring of crop production using a satellite-based Climate-Variability Impact Index. Agr. Forest Meteorol 2005, 132, 344–358.
[9]
Balint, Z.; Mutua, F.M.; Muchiri, P. Drought Monitoring with the Combined Drought Index; FAO-SWALIM: Nairobi, Kenya, 2011.
[10]
Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E.P. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ 2008, 112, 576–587.
[11]
Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ 2007, 108, 290–310.
[12]
Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ 2005, 96, 366–374.
[13]
Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ 2010, 114, 106–115.
[14]
Mirik, M.; Ansley, R.J.; Steddom, K.; Rush, C.M.; Michels, G.J.; Elliott, N.C. Analysis of high spectral and spatial resolution hyperspectral imagery for greenbug infestation in winter wheat using constrained energy minimization classifier. Remote Sens. 2013. in review.
[15]
Zecha, C.W.; Link, J.; Claupein, W. Sensor platforms in precision farming: Categorization and research applications. Remote Sens. 2013. in review.
[16]
The Royal Society. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture, 2005. Available onoline: http://royalsociety.org/Reapingthebenefits (accessed on 18 February 2013).
[17]
Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Haddad, D.; et al. Food Security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818.
[18]
Jones, P.G.; Thornton, P.K. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environ. Change 2003, 13, 51–59.
[19]
IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007.
[20]
The State of Food Insecurity in the World 2009: Economic Crises—Impacts and Lessons Learned; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2009.
[21]
Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 1120–11210.
[22]
Pelletier, N.; Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000–2050. Proc. Natl. Acad. Sci. USA 2010, 107, 18371–18374.
[23]
Dirzo, R.; Raven, P.H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour 2003, 28, 137–167.
[24]
Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057.
[25]
Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl 1997, 7, 737–750.
[26]
Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The evolution and future of Earth’s nitrogen cycle. Science 2010, 330, 192–196.
[27]
Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Velpuri, M.; Reddy, G.P.O.; Cai, X.L.; Gumma, M.; et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens 2009, 30, 3679–3733.
[28]
Thenkabail, P.S. Global croplands and their importance for water and food security in the twenty-first century: Towards an ever green revolution that combines a second green revolution with a blue revolution. Remote Sens 2010, 2, 2305–2231.
[29]
Postel, S.; Daily, G.C.; Ehrlich, P.R. Human appropriation of renewable fresh water. Science 1996, 271, 785–788.
[30]
Bernardes, T.; Moreira, M.A.; Adami, M.; Giarolla, A.; Rudorff, B.F.T. Monitoring biennial bearing effect on coffee yield using MODIS remote sensing imagery. Remote Sens 2012, 4, 2492–2509.
[31]
Duveiller, G.; Lopez, R.; Baruth, B. Enhanced processing of low spatial resolution fAPAR time series for sugarcane yield forecasting and monitoring. Remote Sens. 2013. in review.
[32]
Mulianga, B.; Begue, A.; Simoes, M.; Todoroff, P. Forecasting regional sugarcane yield based on time integral and spatial aggregation of MODIS NDVI. Remote Sens. 2013. in reivew.
[33]
Guerriero, L.; Pierdicca, N.; Pulvirenti, L.; Ferrazzoli, P. Use of satellite radar bistatic measurements for crop monitoring: A simulation study. Remote Sens 2013, 5, 864–890.
[34]
Rembold, F.; Atzberger, C.; Rojas, O.; Savin, I. Using low resolution satellite imagey for yield prediction and yield anomaly detection. Remote Sens. 2013. in review.
[35]
Atzberger, C.; Rembold, F. Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets. Remote Sens. 2013. in review.
[36]
Edlinger, J.; Conrad, C.; Lamers, J.; Khasankhanova, G.; Koellner, T. Reconstructing the spatio-temporal development of irrigated production systems in Uzbekistan using Landsat time series. Remote Sens 2012, 4, 3972–3994.
[37]
Zhang, J.; Feng, L.; Yao, F. Crop area extraction by the integration of MODIS-EVI time series data and China’s high spatial resolution Environment Satellite (HJ-1) data. Remote Sens. 2013. in review.
[38]
Udelhoven, T.; Delfosse, P.; Bossung, C.; Ronellenfitsch, F.; Mayer, F.; Schlerf, M.; Machwitz, M.; Hoffmann, L. Retrieving the bioenergy potential from maize crops using hyperspectral remote sensing. Remote Sens 2013, 5, 254–273.
[39]
R?der, A.; Udelhoven, T.; del Barrio, G.; Tsiourlis, G.M. Trend analysis of Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in Northern Greece. Remote Sens. Environ 2008, 112, 2863–2875.
[40]
Baret, F.; Houles, V.; Guérif, M. Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management. J. Exp. Bot 2007, 58, 869–880.
[41]
Houles, V.; Guerif, M.; Mary, B. Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations. Eur. J. Agron 2007, 27, 1–11.
[42]
Clevers, J.G.P.W.; Kooistra, L. Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content. Proceedings of 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, Portugal, 6–9 June 2011; pp. 1–4.
[43]
Gowda, P.H.; Oommen, T.; Howell, T.A.; Schwartz, R.C. Retrieving leaf area index from remotely sensed data using advanced statistical approaches. Remote Sens. 2013. in review.
[44]
Vuolo, F.; Neugebauer, N.; Falanga, S.; Atzberger, C.; D'Urso, G. Estimation of Leaf Area Index using DEIMOS-1 data: Calibration and transferability of a semi-empirical relationship between two agricultural areas. Remote Sens. 2013. in review.
[45]
Capodici, F.; D’Urso, G.; Maltese, A. Investigating the relationship between X-band SAR data from COSMOS-Skymed satellite and NDVI for LAI detection. Remote Sens. 2013. in review.
[46]
Meroni, M.; Marinho, E.; Sghaier, N.; Verstrate, M.M.; Leo, O. Remote sensing based yield estimation in a stochastic framework—Case study of durum wheat in Tunisia. Remote Sens 2013, 5, 539–557.
[47]
Lyle, G.; Lewis, M.; Ostendorf, B. Testing the temporal ability of Landsat imagery and precision agriculture technology to provide high resolution historical estimates of wheat yield at the farm scale. Remote Sens. 2013. in review.
[48]
Zaks, D.P.M.; Kucharik, C.J. Data and monitoring needs for a more ecological agriculture. Environ. Res. Lett 2011, 6, 1–10.
[49]
Naylor, R. Expanding the boundaries of agricultural development. Food Secur 2011, 3, 233–251.
[50]
Road Map towards the Implementation of the United Nations Millennium Declaration: Report of the Secretary-General. Document A/56/326; New York, NY, USA, 2001.
[51]
Becker-Reshef, I.; Justice, C.; Doorn, B.; Reynolds, C.; Anyamba, A.; Tucker, C.J.; Korontzi, S. NASA’s contribution to the Group on Earth Observation (GEO) global agricultural monitoring system of systems. The Earth Obs 2009, 21, 24–29.
[52]
Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ 2002, 83, 3–15.
[53]
Group on Earth Observations (GEO). Global Agricultural Monitoring System of Systems, Task AG-07-03a. Available online: http://www.earthobservations.org/cop_ag_gams.shtml (accessed on 18 February 2013).
[54]
Doraiswamy, P.C.; Sinclair, T.R.; Hollinger, S.; Akhmedov, B.; Stern, A.; Prueger, J. Application of MODIS derived parameters for regional crop yield assessment. Remote Sens. Environ 2005, 97, 192–202.
[55]
Shen, Y.; Di, L.; Wu, L.; Yu, G.; Tang, H.; Yu, G.; Shao, Y. Real-time estimation of corn progress stages using hidden markov models with multisource features. In Remote Sens.; 2013. in review.
[56]
Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett 2007, 34, L06407.
[57]
Zhan, X.; Sohlberg, R.A.; Townshend, J.R.G.; DiMiceli, C.; Carroll, M.L.; Eastman, J.C.; Hansen, M.C.; DeFries, R.S. Detection of land cover changes using MODIS 250 m data. Remote Sens. Environ 2002, 83, 336–350.
[58]
Yin, H.; Udelhoven, T.; Fensholt, R.; Pflugmacher, D.; Hostert, P. How NDVI trends from AVHRR and SPOT VGT time series differ in agricultural areas: An Inner Mongolian case study. Remote Sens. 2013. in review.
[59]
Meroni, M.; Atberger, C.; Vancutsem, C.; Gobron, N.; Baret, F.; Lacaze, R.; Eerens, H.; Leo, O. Evaluation of agreement between space remote sensing SPOT-VEGETATION fAPAR time series. IEEE Trans. Geosci. Remote Sens 2012, 99, 1–12.
[60]
Luiz, A.J.B.; Formaggio, A.R.; Epiphanio, J.C.N. Objective Sampling Estimation of Crop Area Based on Remote Sensing Images. In Computational Methods for Agricultural Research. Advances and Applications; Prado, H.A., Luiz, A.J.B., Chaib Filho, H., Eds.;. Chapter 4 IGI-Global-Global: Hershey, PA, USA, 2011; pp. 73–95.
[61]
Roughgarden, J.; Running, S.W.; Matson, P.A. What does remote sensing do for ecology? Ecology 1991, 72, 1918–1922.
Bauer, M.E. LACIE: An experiment in global crop forecasting. Crops Soils Mag 1979, 31, 5–7.
[64]
Pinter, P.J., Jr; Ritchie, J.C.; Hatfield, J.L.; Hart, G.F. The agricultural research service’s remote sensing program: An example of interagency collaboration. Photogramm. Eng. Remote Sensing 2003, 69, 615–618.
[65]
Global Crop Production Analysis, Available online: http://www.pecad.fas.usda.gov/ (accessed on 18 February 2013).
[66]
Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using Low Resolution Satellite Imagery for Crop Monitoring and Yield Prediction at the Regional Scale. In Remote Sensing Optical Observations of Vegetation Properties; Maselli, F., Menenti, M., Brivio, A., Eds.; Research Signpost: Kerala, India, 2010; pp. 201–230.
[67]
USAID Famine Early Warning System (FEWS-NET), Available online: http://fews.net (accessed on 18 February 2013).
[68]
UN Food and Agriculture Organization (FAO) Global Information and Early Warning System (GIEWS), Available online: http://fao.org/giews (accessed on 18 February 2013).
[69]
Baruth, B.; Royer, A.; Genovese, G.; Klisch, A. The use of remote sensing within the MARS crop yield monitoring system of the European Commission. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2008, 36, 935–941.
[70]
Monitoring Agricultural ResourceS (MARS); Joint Research Center, European Commision: Ispra Italy. Available online: http://www.eea.europa.eu/data-and-maps/data/external/monitoring-agricultural-resources-mars (accessed on 18 February 2013).
[71]
Global Monitoring of Food Security (GMFS) Program of the European Union, Available online: http://gmfs.info (accessed on 18 February 2013).
[72]
Institute of Remote Sensing Applications (IRSA) of the Chinese Academy of Sciences (CAS). China Crop Watch Program, Available online: http://cropwatch.com.cn/en (accessed on 18 February 2013).
[73]
Soares, J.; Williams, M.; Jarvis, I.; Bingfang, W.; Leo, O.; Fabre, P.; Huynh, F.; Kosuth, P.; Lepoutre, D.; Parihar, J.S.; et al. The G20 Global Agricultural Monitoring Initiative (GEO-GLAM). Technical Report, 2011, 16.
[74]
The ProbaV International Users Committee, Available online: http://probav-iuc.org/ (accessed on 18 February 2013).
[75]
Vuolo, F.; Mattiuzzi, M.; Klisch, A.; Atzberger, C. Data service platform for MODIS vegetation indices time series processing at BOKU Vienna: Current status and future perspectives. Proc. SPIE 2012, 8538A, 1–11.
[76]
Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ 1979, 8, 127–150.
[77]
Tucker, C.J.; Holben, B.N.; Elgin, J.H., Jr; McMurtrey, J.E., III. Relationship of spectral data to grain yield variation. Photogramm. Eng. Remote Sensing 1980, 46, 657–666.
[78]
Badhwar, G.D.; Austin, W.W.; Carnes, J.G. A semi-automatic technique for multitemporal classification of a given crop within a Landsat scene. Pattern Recogn 1982, 15, 217–230.
[79]
Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sens. Environ 2004, 93, 412–422.
[80]
Udelhoven, T.; van der Linden, S.; Waske, B.; Stellmes, M.; Hoffmann, L. Hypertemporal classification of large areas using decision fusion. IEEE Geosci. Remote Sens. Lett 2009, 6, 592–596.
[81]
Vuolo, F.; Richter, K.; Atzberger, C. Evaluation of time-series and phenological indicators for land cover classification based on MODIS data. Proc. SPIE 2011, 8174, doi:10.1117/12.898389.
[82]
Vuolo, F.; Atzberger, C. Exploiting the classification Performance of Support Vector Machines with multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data in areas of agreement and disagreement of existing land cover products. Remote Sens 2012, 4, 3143–3167.
[83]
Barnsley, M.J.; Allison, D.; Lewis, P. On the information content of multiple view angle (MVA) images. Int. J. Remote Sens 1997, 18, 1937–1960.
[84]
Clevers, J.G.P.W.; Büker, C.; van Leeuwen, H.J.C.; Bouman, B.A.M. A framework for monitoring crop growth by combining directional and spectral remote sensing information. Remote Sens. Environ 1994, 50, 161–170.
[85]
Koukal, T.; Atzberger, C. Potential of multi-angular data derived from a digital aerial frame camera for forest classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2012, 5, 30–43.
[86]
Schlerf, M.; Atzberger, C. Vegetation structure retrieval in Beech and Spruce forests using spectrodirectional satellite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2012, 5, 8–17.
[87]
Vintrou, E.; Sourmare, M.; Bernard, S.; Begue, A.; Baron, C.; Lo Seen, D. Mapping fragmented agricultural systems in the Sudano-Sahelian environements of Africa using Random Forest and ensemble metrics of coarse resolution MODIS imagery. Photogramm. Eng. Remote Sensing 2012, 78, 839–848.
[88]
Prince, S.D. A model of regional primary production for use with coarse resolution satellite data. Int. J. Remote Sens 1991, 12, 1313–1330.
[89]
Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ 1991, 35, 161–173.
[90]
Delécolle, R.; Maas, S.J.; Guérif, M.; Baret, F. Remote sensing and crop production models: present trends. ISPRS J. Photogramm 1992, 47, 145–161.
[91]
Doraiswamy, P.C.; Cook, P.W. Spring wheat yield assessment using NOAA AVHRR data. Can. J. Remote Sens 1995, 21, 41–51.
[92]
Lee, R.; Kastens, D.L.; Price, K.P.; Martinko, E.A. Forecasting Corn Yield in Iowa Using Remotely Sensed Data and Vegetation Phenology Information. Proceedings of the Second International Conference on Geospatial Information in Agriculture and Forestry, Lake Buena Vista, FL, USA, 10–12 January 2000; II, pp. 460–467.
[93]
Maselli, F.; Rembold, F. Analysis of GAC NDVI data for cropland identification and yield forecasting in Mediterranean African countries. Photogramm. Eng. Remote Sensing 2001, 67, 593–602.
[94]
Vancutsem, C.; Marinho, E.; Francois, K.; See, L.; Fritz, S. Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale. Remote Sens 2013, 5, 19–41.
[95]
Maselli, F.; Conese, C.; Petkov, L.; Gilabert, M.A. Environmental monitoring and crop forecasting in the Sahel through the use of NOAA NDVI data. A case study: Niger 1986–89. Int. J. Remote Sens 1993, 14, 3471–3487.
[96]
Johnson, G.E.; van Dijk, A.; Sakamoto, C.M. The use of AVHRR data in operational agricultural assessment in Africa. Geocarto Int 1987, 1, 41–60.
[97]
Balint, Z.; Muchiri, P.. Personal Communication; FAO-Somalia (SWALIM), Nairobi, Kenya, January 2013 .
[98]
Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ 2003, 84, 471–475.
[99]
Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ 2012, 123, 400–417.
[100]
Arvor, D.; Jonathan, M.; Simoes Penello Meirelles, M.; Durbreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens 2011, 32, 7847–7871.
[101]
Guerif, M.; Bl?ser, B.; Atzberger, C.; Clastre, P.; Guinot, J.P.; Delecolle, R. Identification de parcelles agricoles à partir de la forme de leur évolution radiométrique au cours de la saison de culture. Photo Interpretation 1996, 1, 12–22.
[102]
Bradley, B.A.; Jacob, R.W.; Hermance, J.F.; Mustard, J.F. A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens. Environ 2007, 106, 137–145.
[103]
Udelhoven, T.; Stellmes, M.; Del Barrio, G.; Hill, J. Modelling the NDVI–rainfall relationship in Spain (1989–1999) using distributed lag models. Int. J. Remote Sens 2008, 30, 1961–1976.
[104]
Jong, R.; de Bruin, S.; de Wit, A.J.W.; de Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ 2011, 115, 692–702.
[105]
Beck, P.S.A.; Atzberger, C.; H?gda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ 2006, 100, 321–334.
White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem. Cy 1997, 11, 217–234.
[108]
Badeck, F.-W.; Bondeau, A.; B?ttcher, K.; Doktor, D.; Lucht, W.; Schaber, J.; Sitch, S. Responses of spring phenology to climate change. New Phytol 2004, 162, 295–309.
[109]
J?nsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens 2002, 40, 1824–1832.
[110]
St?ckli, R.; Vidale, P.L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens 2004, 25, 3303–3330.
[111]
Lloyd, D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int. J. Remote Sens 1990, 11, 2269–2279.
[112]
Kaduk, J.; Heimann, M. A prognostic phenology scheme for global terrestrial carbon cycle models. Clim. Res 1996, 6, 1–19.
[113]
Hirosawa, Y.; Marsh, S.E.; Kliman, D.H. Application of standardized principal component analysis of land-cover characterization using multitemporal AVHRR data. Remote Sens. Environ 1996, 58, 267–281.
[114]
Azzali, S.; Menenti, M. Mapping vegetation-soil-climate complexes in southern Africa using temporal Fourier analysis of NOAA-AVHRR NDVI data. Int. J. Remote Sens 2000, 21, 973–996.
Anyamba, A.; Eastman, J.R. Interannual variability of NDVI over Africa and its relation to El Ni?o/Southern Oscillation. Int. J. Remote Sens 1996, 17, 2533–2548.
[117]
J?nsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci 2004, 30, 833–845.
[118]
Hermance, J.F. Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness. Int. J. Remote Sens 2007, 28, 2801–2819.
[119]
Udelhoven, T. TimeStats: A software tool for the retrieval of temporal patterns from global satellite archives. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2011, 4, 310–317.
[120]
Epiphanio, R.D.V.; Formaggio, A.R.; Rudorff, B.F.T.; Maeda, E.E.; Luiz, A.J.B. Estimating soybean crop areas using spectral-temporal surfaces derived from MODIS images in Mato Grosso, Brazil. Pesquisa Agropecuária Brasileira 2010, 45, 72–80.
[121]
Hostert, P.; Kuemmerle, T.; Prishchepov, A.; Sieber, A.; Lambin, E.F.; Radeloff, V.C. Rapid land use change after socio-economic disturbances: The collapse of the Soviet Union versus Chernobyl. Environ. Res. Lett 2011, 6, 04520.
[122]
Kuemmerle, T.; Olofsson, P.; Chaskovskyy, O.; Baumann, M.; Ostapowicz, K.; Woodcock, C.; Houghton, R.A.; Hostert, P.; Keeton, W.S.; Radeloff, V.C. Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biol 2011, 17, 1335–1349.
[123]
Atzberger, C.; Rembold, F. Portability of neural nets modelling regional winter crop acreages using AVHRR time series. Eur. J. Remote Sens 2012, 45, 371–392.
[124]
Vieira, M.A.; Formaggio, A.R.; Rennó, C.D.; Atzberger, C.; Aguiar, D.A.; Mello, M.P. Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens. Environ 2012, 123, 553–562.
[125]
Gallego, J. Stratified sampling of satellite images with a systematic grid of points. ISPRS J. Photogramm 2005, 59, 369–376.
[126]
Gallego, J. Remote sensing and land cover estimation. Int. J. Remote Sens 2004, 25, 3019–3047.
[127]
Food and Agriculture Organization of the United Nations (FAO). Multiple Frame Agricultural Surveys: Agricultural Survey Programs Based on Area Frame or Dual Frame (Area and List) Sample Design. Statistical Development Series, 10; FAO: Rome, Italy, 1998; Volume 2, p. 242.
[128]
Vogelmann, J.E.; Howard, S.M.; Yang, L.; Larson, C.R.; Wylie, B.K.; van Driel, N. Completion of the 1990s National Land Cover Data set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm. Eng. Remote Sensing 2001, 67, 650–662.
[129]
Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens 2000, 21, 1303–1330.
[130]
de Fries, R.S.; Hansen, M.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers. Int. J. Remote Sens 1998, 19, 3141–3168.
[131]
Singh, A. Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens 1989, 10, 989–1003.
[132]
Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ 2006, 105, 142–154.
[133]
Hunter, E.L.; Power, C.H. An assessment of two classification methods for mapping Thames estuary intertidal habitats using CASI data. Int. J. Remote Sens 2002, 23, 2989–3008.
[134]
Lambin, E.F.; Strahler, A.H. Change-vector analysis in multi-temporal space: A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sens. Environ 1994, 48, 231–244.
[135]
Foody, G.M. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens. Environ 2010, 114, 2271–2285.
[136]
Hayes, D.J.; Cohen, W.B. Spatial, spectral and temporal patterns of tropical forest cover change as observed with multiple scales of optical satellite data. Remote Sens. Environ 2007, 106, 1–16.
[137]
Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ 2007, 110, 370–386.
[138]
Sonnenschein, R. Land Use Change and Its Effects on Vegetation and Fire Patterns in Mediterranean RangelandsPh.D. Dissertation, Humboldt University Berlin (HU Berlin). Berlin, Germany, 2012, 125.
[139]
Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sens. Environ 2009, 113, 248–258.
[140]
Atzberger, C.; Eilers, P.H.C. A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America. Int. J. Dig. Earth 2011, 4, 365–386.
[141]
Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem 1964, 36, 1627–1639.
[142]
Chen, J.; J?nsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ 2004, 91, 332–344.
[143]
Dash, J.; Jeganathan, C.; Atkinson, P.M. The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India. Remote Sens. Environ 2010, 114, 1388–1402.
[144]
Fisher, J.I.; Mustard, J.F.; Vadeboncoeur, M.A. Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote Sens. Environ 2006, 100, 265–279.
[145]
Eilers, P.H.C. A perfect smoother. Anal. Chem 2003, 75, 3631–3636.
[146]
Atzberger, C.; Eilers, P.H.C. Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements. Int. J. Remote Sens 2011, 32, 3689–3709.
[147]
Satellite Data Processing Facility at University of Natural Resources and Life Sciences, Vienna. Available online: http://ivfl-info.boku.ac.at/index.php/eo-data-processing/ (accessed on 18 February 2013).
[148]
Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-Wiki.og: The use of crowdsourcing to improve global land cover. Remote Sens 2009, 1, 345–354.
[149]
Joint Experiment of Crop Assessment and Monitoring (JECAM), Available online: http://jecam.org (accessed on 18 February 2013).
[150]
Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ 2012, 122, 2–10.