全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimating Vegetation Beta Diversity from Airborne Imaging Spectroscopy and Unsupervised Clustering

DOI: 10.3390/rs5052057

Keywords: beta diversity, Bray-Curtis, Carnegie Airborne Observatory, hyperspectral, Kruger National Park, LiDAR, savanna, spectral variation hypothesis, k-means clustering, support vector machine, unsupervised

Full-Text   Cite this paper   Add to My Lib

Abstract:

Airborne remote sensing has an important role to play in mapping and monitoring biodiversity over large spatial scales. Techniques for applying this technology to biodiversity mapping have focused on remote species identification of individual crowns; however, this requires collection of a large number of crowns to train a classifier, which may limit the usefulness of this approach in many study regions. Based on the premise that the spectral variation among sites is related to their ecological dissimilarity, we asked whether it is possible to estimate the beta diversity, or turnover in species composition, among sites without the use of training data. We evaluated alternative methods using simulated communities constructed from the spectra of field-identified tree and shrub crowns from an African savanna. A method based on the k-means clustering of crown spectra produced beta diversity estimates (measured as Bray-Curtis dissimilarity) among sites with an average pairwise correlation of ~0.5 with the true beta diversity, compared to an average correlation of ~0.8 obtained by a supervised species classification approach. When applied to savanna landscapes, the unsupervised clustering method produced beta diversity estimates similar to those obtained from supervised classification. The unsupervised method proposed here can be used to estimate the spatial structure of species turnover in a landscape when training data (e.g., tree crowns) are unavailable, providing top-down information for science, conservation and ecosystem management applications.

References

[1]  Kerr, J.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol 2003, 18, 299–305.
[2]  Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol 2003, 18, 306–314.
[3]  Gillespie, T.W.; Foody, G.M.; Rocchini, D.; Giorgi, A.P.; Saatchi, S. Measuring and modeling biodiversity from space. Progr. Phys. Geogr 2008, 32, 203–221.
[4]  Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model 2000, 135, 147–186.
[5]  Foody, G.M.; Cutler, M.E.J. Mapping the species richness and composition of tropical forests from remotely sensed data with neural networks. Ecol. Model 2006, 195, 37–42.
[6]  Carlson, K.M.; Asner, G.P.; Hughes, R.F.; Ostertag, R.; Martin, R.E. Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests. Ecosystems 2007, 10, 536–549.
[7]  Rocchini, D. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sens. Environ 2007, 111, 423–434.
[8]  Saatchi, S.; Buermann, W.; ter Steeg, H.; Mori, S.; Smith, T.B. Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sens. Environ 2008, 112, 2000–2017.
[9]  Tuomisto, H.; Poulsen, A.D.; Ruokolainen, K.; Moran, R.C.; Quintana, C.; Celi, J.; Ca?as, G. Linking floristic patterns with soil heterogeneity and satellite imagery in Ecuadorian Amazonia. Ecol. Appl 2003, 13, 352–371.
[10]  Feilhauer, H.; Schmidtlein, S. Mapping continuous fields of forest alpha and beta diversity. Appl. Veg. Sci 2009, 12, 429–439.
[11]  Rocchini, D. Distance decay in spectral space in analyzing ecosystem β-diversity. Int. J. Remote Sens 2007, 28, 2635–2644.
[12]  Whittaker, R.H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr 1960, 30, 279–338.
[13]  Ferrier, S.; Manion, G.; Elith, J.; Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib 2007, 13, 252–264.
[14]  Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ 2005, 96, 375–398.
[15]  Féret, J.B.; Asner, G.P. Tree species discrimination in tropical forests using airborne imaging spectroscopy. IEEE Trans. Geosci. Remote. Sens 2012, 99, 1–12.
[16]  Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment. ISPRS J. Photogramm 2012, 69, 167–179.
[17]  Colgan, M.S.; Baldeck, C.A.; Féret, J.-B.; Asner, G.P. Mapping savanna tree species at ecosystem scales using support vector machine classification and BRDF correction on airborne hyperspectral and LiDAR data. Remote Sens 2012, 4, 3462–3480.
[18]  Baldeck, C.A.; Colgan, M.S.; Féret, J.-B.; Levick, S.R.; Martin, R.E.; Asner, G.P. Landscape-scale variation in plant community composition of an African savanna from airborne species mapping. Ecol. Appl. 2013. in review.
[19]  Palmer, M.W.; Wohlgemuth, T.; Earls, P.; Arévalo, J.R.; Thompson, S.D. Opportunities for Long-Term Ecological Research at the Tallgrass Prairie Preserve, Oklahoma. In Proceedings of the ILTER Regional Workshop: Cooperation in Long Term Ecological Research in Central and Eastern Europe, Budapest, Hungary, 22–29 June 1999; pp. 123–128.
[20]  Palmer, M.W.; Earls, P.G.; Hoagland, B.W.; White, P.S.; Wohlgemuth, T. Quantitative tools for perfecting species lists. Environmetrics 2002, 13, 121–137.
[21]  Asner, G.P.; Knapp, D.E.; Kennedy-Bowdoin, T.; Jones, M.O.; Martin, R.E.; Boardman, J.; Field, C.B. Carnegie Airborne Observatory: In-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems. J. Appl. Remote Sens. 2007, 1, 013536.
[22]  Bray, J.R.; Curtis, J.T. An ordination of upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349.
[23]  Camps-Valls, G.; Gómez-Chova, L.; Calpe-Maravilla, J.; Martín-Guerrero, J.D.; Soria-Olivas, E.; Alonso-Chordá, L.; Moreno, J. Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1530–1542.
[24]  Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790.
[25]  Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. 2011, 66, 247–259.
[26]  Gertenbach, W.P.D. Landscapes of the Kruger National Park. Koedoe 1983, 26, 9–121.
[27]  Du Toit, J.T.; Rogers, K.H.; Biggs, H.C. The Kruger Experience: Ecology and Management of Savanna Heterogeneity; Island Press: Washington, DC, USA, 2003.
[28]  Shepard, R. The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika 1962, 27, 125–140.
[29]  Kruskal, J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964, 29, 1–27.
[30]  Dimitriadou, E.; Hornik, K.; Leisch, F.; Meyer, D.; Weingessel, A. E1071: Miscellaneous Functions of the Department of Statistics (e1071). Available online: http://CRAN.R-project.org/package=e1071 (accessed on 10 December 2012).
[31]  Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O'Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package version 2.0–4. Available online: http://CRAN.R-project.org/package=vegan (accessed on 10 December 2012).
[32]  Hijmans, R.J.; van Etten, J. Raster: Geographic Analysis and Modeling with Raster Data. R Package Version 2.0–12. Available online: http://CRAN.R-project.org/package=raster (accessed on 10 December 2012).
[33]  R Development Core Team. R: A Language and Environment for Statistical Computing—R Foundation for Statistical Computing, 2012. Available online: http://www.R-project.org/ (accessed on 14 November 2012).
[34]  Asner, G.P.; Martin, R.E. Airborne spectranomics: Mapping canopy chemical and taxonomic diversity in tropical forests. Front. Ecol. Environ. 2009, 7, 269–276.
[35]  Higgins, M.A.; Ruokolainen, K.; Tuomisto, H.; Llerena, N.; Cardenas, G.; Phillips, O.A.; Vásquez, R.; R?s?nen, M. Geological control of floristic composition in Amazonian forests. J. Biogeogr. 2011, 38, 2136–2149.
[36]  Margules, C.R.; Pressey, R.L. Systematic conservation planning. Nature 2000, 405, 243–253.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133