Signal Classification of Submerged Aquatic Vegetation Based on the Hemispherical–Conical Reflectance Factor Spectrum Shape in the Yellow and Red Regions
The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical–conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing.
References
[1]
Esteves, F.A. Fundamentos de Limnologia, 2nd ed. ed.; Interciência: Rio de Janeiro, Brazil, 1998.
[2]
Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed. ed.; Elsevier Academic Press: London, UK, 2001.
[3]
Dekker, A.G.; Brando, V.E.; Anstee, J.M.; Pinnel, N.; Kutser, T.; Hoogeboom, E.J.; Peters, S.; Pasterkamp, R.; Vos, C.; Olbert, C.; Malthus, T.J.M. Imaging Spectrometry of Water. In Imaging Spectrometry: Basic Principles and Prospective Applications; van der Meer, F.D., Jong, S.M., Eds.; Kluwer Academic Publishers: New York, NY, USA, 2002. Chapter 11; pp. 307–359.
[4]
Pitelli, R.L.C.M.; Toffaneli, C.M.; Vieira, E.A.; Pitelli, R.A.; Velini, E.D. Dynamics of the aquatic macrophyte community in the Santana reservoir in Pirai-RJ. Weed Sci 2008, 26, 473–480.
[5]
Cavenaghi, A.L.; Velini, E.D.; Galo, M.L.B.T.; Carvalho, F.T.; Negrisoli, E.; Trindade, M.L.B.; Simionato, J.L.A. Caracterization of water quality and sediment related to the occurrence of aquatic plants in five Tietê waterhed reservoirs. Weed Sci 2003, 21, 43–52.
[6]
Thomaz, S.M.; Souza, D.C.; Bini, L.M. Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir. Brazil): The influence of limnology and morphometry. Hydrobiologia 2003, 505, 119–128.
[7]
Bini, L.M.; Thomaz, S.M. Prediction of Egeria najas and Egeria densa occurrence in a large subtropical reservoir (Itaipu Reservoir. Brazil-Paraguay). Aquat. Bot 2005, 83, 227–238.
[8]
Rybicki, N.B.; Carter, V. Light and temperature effects on the growth of wild celery and hydrilla. J. Aquat. Plant Manage 2002, 40, 92–99.
[9]
Lee, K.H.; Lunetta, R.S. Wetland Detection Methods. In Wetland and Environment Applications of GIS; Lyon, J.G., McCarthy, J., Eds.; Lewis Publishers: New York, NY, USA, 1996; pp. 246–284.
[10]
Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensig for identification and mapping of wetland vegetation: A review. Wetlands Ecol. Manag 2010, 18, 281–296.
[11]
Ackleson, S.G.; Klemas, V. Remote sensing of submerged aquatic vegetation in lower Chesapeake Bay: A comparison of Landsat MSS to TM imagery. Remote Sens. Environ 1987, 22, 235–248.
[12]
Pe?uelas, J.; Gamon, J.A.; Griffin, K.L.; Field, C.B. Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sens. Environ 1993, 46, 110–118.
[13]
Malthus, T.J.; George, D.G. Airborne remote sensing of macrophytes in Cefni Reservoir, Anglesey, UK. Aquat. Bot 1997, 58, 317–332.
[14]
Han, L.; Rundquist, D.C. The spectral responses of Ceratophyllum demersum at varying depths in an experimental tank. Int. J. Remote Sens 2003, 24, 859–864.
[15]
Hestir, E.L.; Khanna, S.; Andrew, M.E.; Santos, M.J.; Viers, J.H.; Greenberg, J.A.; Rajapakse, S.S.; Ustin, S.L. Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sens. Environ 2008, 112, 4034–4047.
[16]
Phinn, S.R.; Dekker, A.G.; Brando, V.E.; Roelfsema, C.M. Mapping water quality and substrate cover in optically complex coastal and reef waters: An integrated approach. Mar. Pollut. Bull 2005, 51, 459–469.
[17]
Brando, V.E.; Anstee, J.M.; Wettle, M.; Dekker, A.G.; Phinn, S.R.; Roelfsema, C. A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data. Remote Sens. Environ 2009, 113, 755–770.
[18]
Lyons, M.; Phinn, S.; Roelfsema, C. Integrating Quickbird multi-spectral satellite and field data: Mapping bathymetry, seagrass cover, seagrass species and change in Moreton Bay, Australia in 2004 and 2007. Remote Sens 2011, 3, 42–64.
[19]
Hedley, J.D.; Roelfsema, C.M.; Phinn, S.R.; Mumby, P.J. Environmental and sensor limitations in optical remote sensing of coral reefs: Implications for monitoring and sensor design. Remote Sens 2012, 4, 271–302.
[20]
Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. ed.; Cambridge University Press: Cambridge, UK, 1994.
[21]
Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: San Diego, CA, USA, 1994.
[22]
Gitelson, A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens 1992, 13, 3367–3373.
[23]
Mittenzwey, K.-H.; Ullrich, S.; Gitelson, A.A.; Kondratiev, K.Y. Determination of chlorophyll a of inland waters on the basis of spectral reflectance. Limnol. Oceanogr 1992, 37, 147–149.
[24]
Gitelson, A.; Garbuzov, G.; Szilagyi, F.; Mittenzwey, K-H.; Karnieli, A.; Kaiser, A. Quantitative remote sensing methods for real-time monitoring of inland waters quality. Int. J. Remote Sens 1993, 14, 1269–1295.
[25]
Rundquist, D.C.; Han, L.H.; Schalles, J.F.; Peake, J.S. Remote measurement of algal chlorophyll in surface waters: The case for the first derivative of reflectance near 690 nm. Photogramm. Eng. Remote Sensing 1996, 62, 195–200.
[26]
Goodin, D.G.; Han, L.; Fraser, R.N.; Rundquist, C.; Stebbins, W.A.; Schalles, J.F. Analysis of suspended solids in water using remotely sensed high resolution derivative spectra. Photogramm. Eng. Remote Sensing 1993, 59, 505–510.
[27]
Chen, Z.; Curran, P.J.; Hansom, J.D. Derivative reflectance spectroscopy to estimate suspended sediment concentration. Remote Sens. Environ 1992, 40, 67–77.
[28]
Han, L.; Rundquist, D.C.; Liu, L.L.; Fraser, R.N.; Schalles, J.F. The spectra responses of algal chlorophyll in water with varying levels of suspended sediment. Int. J. Remote Sens 1994, 15, 3707–3718.
[29]
Han, L. Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters. Photogramm. Eng. Remote Sensing 1997, 63, 701–705.
Yuan, L.; Zhang, L. Mapping large-scale distribution of submerged aquatic vegetation coverage using remote sensing. Ecol. Inform 2008, 3, 245–251.
[32]
Rotta, L.H.S. Inferência Especial Para Mapeamento de Macrófitas Submersas—Estudo de CasoM.Sc. Thesis, Universidade Estadual Paulista, Bauru, Brazil, 2011.
[33]
Clementson, L.A.; Parslow, J.S.; Turnbull, A.R.; McKenzie, D.C.; Rathbone, C.E. Optical properties of waters in Australasian sector of the Southern Ocean. J. Geophys. Res 2001, 106, 31611–31625.
[34]
Brando, V.E.; Dekker, A.G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans. Geosci. Remote Sens 2003, 41, 1378–1387.
[35]
Lee, Z.; Casey, B.; Arnone, R.; Weidmann, A.; Parsons, R.; Montes, M.J.; Gao, B.C.; Goode, W.; Davis, C.O.; Dye, J. Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform. J. Appl. Remote Sens 2007, 1, 1–16.
[36]
Lee, Z.L.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl. Opt 1999, 38, 3831–3843.
[37]
Casal, G.; Sánchez-Carnero, N.; Domínguez-Gómez, J.A.; Kutser, T.; Freire, J. Assessment of AHS (Airborne Hyperspectral Scanner) sensor to map macroalgal communities on the Ría de Vigo and Ría de Aldán coast (NW Spain). Mar. Biol 2012, 159, 1997–2013.
[38]
Everitt, J.H.; Yang, C.; Escobar, D.E.; Webster, C.F.; Lonard, R.I.; Davis, M.R. Using remote sensing and spatial information technologies to detect and map two aquatic macrophytes. J. Aquat. Plant Manage 1999, 37, 71–80.
[39]
Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens 1983, 4, 273–288.
[40]
Curran, P.J.; Dungan, J.L.; Macler, B.A.; Plummer, S.E. The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration. Remote Sens. Environ 1991, 35, 69–76.
[41]
Filella, I.; Pe?uelas, J. The red edge position and shape as indicators of plant chlorophyll content. biomass and hydric status. Int. J. Remote Sens 1994, 15, 1459–1470.
[42]
Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens 1997, 18, 2691–2697.
[43]
Knipling, E.B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ 1970, 1, 155–159.
[44]
Elvidge, C.D.; Chen, Z. Comparison of broad-band and narrow red and near-infrared vegetation indices. Remote Sens. Environ 1995, 54, 38–48.
[45]
Cho, H.J.; Kirui, P.; Natarajan, H. Test of muti-spectral vegetation index for floating and canopy-forming submerged vegetation. Int. J. Environ. Res. Publ. Health 2008, 5, 477–483.
[46]
Han, L. Spectral Reflectance of Thalassia Testudinum with Varying Depths. Proceedings of 2002 IEEE International Geosciences and Remote Sensing Symposium (IGARSS’02), Toronto, ON, Canada, 24–28 June 2002; pp. 2123–2125.
[47]
Analytical Spectral Devices Inc. FieldSpec? UV/VNIR: HandHeld Spectroradiometer User’s Guide; Analytical Spectral Devices Inc.: Boulder, CO, USA, 2002.
[48]
Poli Control. Portable Digital/Bench Turbidimeter, Model AP 200 (0–1000 NTU), 2012, Available online: www.policontrol.com.br (accessed on 26 October 2012).
[49]
BioSonics Inc. DT-X Digital Scientific Portable Echosounder, 2012. Available online: http://www.biosonicsinc.com/product-dtx-portable-echosounder.asp (accessed on 26 October 2012).
[50]
Sabol, B.M.; Kannenberg, J.; Skogerboe, J.G. Integrating acoustic mapping into operational aquatic plant management a case study in Wisconsin. J. Aquat. Plant Manage 2009, 47, 44–52.
Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res 1984, 89, 6329–6340.
[53]
Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ 1993, 44, 145–163.
[54]
Kruse, F.A.; Lefkoff, A.B.; Dietz, J.B. Expert system-based mineral mapping in northern death valley. California/Nevada. using the Airbone Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ 1993, 44, 309–336.
[55]
Mutanga, O.; Skidmore, A.K.; Kumar, L.; Ferwerda, J. Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain. Int. J. Remote Sens 2005, 26, 1093–1108.
[56]
Youngentob, K.N.; Roberts, D.A.; Held, A.A.; Dennison, P.E.; Jia, X.; Lindernmayer, D.B. Mapping two Eucalyptus subgenera using multiple endmember spectral mixture analysis and continuum-removed imaging spectrometry data. Remote Sens. Environ 2011, 115, 1115–1128.
[57]
Ge, S.; Carruthers, R.I.; Krammer, M.; Everitt, H.; Anderson, G.L. Multiple-level defoliation assessment with hyperspectral data: Integration of continuum-removed absorptions and red edges. Int. J. Remote Sens 2011, 32, 6407–6422.
[58]
Carvalho, J.C.; Barbosa, C.C.; Novo, E.M.; Mantovani, J.E.; Melack, J.; Pereira Filho, W. Applications of Quantitative Analysis Techniques to Monitor Water Quality of Curuai Lake, Brazil. Proceedings of 2003 IEEE International Geosciences and Remote Sensing Symposium, (IGARSS’03), Toulouse, France, 21–25 July 2003; pp. 2362–2364.
Minitab Inc. Software Minitab 15, 2006, Available online: www.minitab.com (accessed on 13 November 2012).
[61]
Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W.; Green, R.O. Discrimination among Semi-Arid Landscape Endmembres Using the Spectral Angle Mapper (SAM) Algorithm. Proceedings of 3rd Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 1–5 June 1992; 1, pp. 147–149.
[62]
Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens 2003, 41, 1388–1400.
[63]
Dennison, P.E.; Halligan, K.Q.; Roberts, D.A. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sens. Environ 2004, 93, 359–367.
[64]
Yonezawa, C. Maximum likelihood classification combined with spectral angle mapper algorithm form high resolution satellite imagery. Int. J. Remote Sens 2007, 28, 3729–3737.
[65]
Cho, M.A.; Debba, P.; Mathieu, R.; Naidoo, L.; Aardt, J.V.; Asner, G.P. Improving discrimination of Savanna tree species through a multiple-endmember spectral angle mapper approach: Canopy-level analysis. IEEE Trans. Geosci. Remote Sens 2010, 48, 4133–4142.
[66]
Barbosa, C.C.F. Sensoriamento Remoto da Dinamica da Circula??o da água no Sistema Planície de Curuai/Rio AmazonasPh.D. Thesis, Instituto Nacional de Pesquisas Espaciais, S?o Josédos Campos, Brazil. 2005.
[67]
MathWorks?. Software MatLab 7. Matlab?—The Language of Techinical Computing2004, Available online: www.mathworks.com (accessed on 13 November 2012).
[68]
Han, L. Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters. Photogramm. Eng. Remote Sensing 1997, 63, 701–705.
[69]
Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed. ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007.