Mapping cropland areas is of great interest in diverse fields, from crop monitoring to climate change and food security. Recognizing the value of a reliable and harmonized crop mask that entirely covers the African continent, the objectives of this study were to (i) consolidate the best existing land cover/land use datasets, (ii) adapt the Land Cover Classification System (LCCS) for harmonization, (iii) assess the final product, and (iv) compare the final product with two existing datasets. Ten datasets were compared and combined through an expert-based approach in order to create the derived map of cropland areas at 250 m covering the whole of Africa. The resulting cropland mask was compared with two recent cropland extent maps at 1 km: one derived from MODIS and one derived from five existing products. The accuracy of the three products was assessed against a validation sample of 3,591 pixels of 1km regularly distributed over Africa and interpreted using high resolution images, which were collected using the Geo-Wiki tool. The comparison of the resulting crop mask with existing products shows that it has a greater agreement with the expert validation dataset, in particular for places where the cropland represents more than 30% of the area of the validation pixel.
References
[1]
FAO. Africover, Available online: http://www.africover.org/ (accessed on 20 December 2012).
[2]
Fritz, S.; See, L.; Rembold, F. Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa. Int. J. Remote Sens 2010, 31, 2237–2256.
[3]
Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year MODIS data. Remote Sens 2010, 2, 1844–1863.
[4]
Biradar, C.M.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; Gumma, M.K.; Gangalakunta, O.R.P.; Cai, X.L.; et al. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int. J. Appl. Earth Obs. Geoinf 2009, 11, 114–129.
[5]
Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.J.; Velpuri, M.; Gumma, M.; Reddy, G.P.O.; Turral, H.; Cai, X.L. A Global irrigated area map (GIAM) using remote sensing at the end of the last millennium. Int. J. Remote Sens 2009, 30, 3679–3733.
[6]
Portmann, F.T.; Siebert, S.; Doll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modelling. Glob. Biogeochem. Cy., 2010, doi:10.1029/2008GB003435.
[7]
Ramankutty, N.; Evan, A.; Monfreda, C.; Foley, J.A. Farming the planet. Part 1: The geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cy. 2008, doi:10.1029/2007GB002952.
[8]
Friedl, M.A.; Mciver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ 2002, 83, 287–302.
[9]
Mayaux, P.; Bartholome, E.; Fritz, S.; Belward, A. A new land-cover map of Africa for the year 2000. J. Biogeogr 2004, 31, 861–877.
[10]
Fritz, S.; You, L.; Bun, A.; See, L.; McCallum, I.; Schill, C.; Perger, C.; Liu, J.; Hansen, M.; Obersteiner, M. Cropland for sub-Saharan Africa: A synergistic approach using five land cover data sets. Geophys. Res. Lett, 2011, doi:10.1029/2010GL046213.
[11]
Defourny, P.; Vancutsem, C.; Pekel, J.F.; Bicheron, P.; Brockmann, C.; Ni?o, F.; Schouten, L.; Leroy, M. Towards a 300 m Global Land Cover Product—The Globcover Initiative. Proceedings of Second Workshop of the EARSeL Special Interest Group on Land Use and Land Cover, Bonn, Germany, 28–30 September 2006.
[12]
Tappan, G.G.; Sall, M.; Wood, E.C.; Cushing, M. Ecoregions and land cover trends in Senegal. J. Arid Environ 2004, 59, 427–462.
[13]
FAO. The GLCN Initiative, Available online: http://www.glcn.org/ (accessed on 20 December 2012).
[14]
Vuolo, F.; Atzberger, C. Exploiting the classification performance of support vector machines with multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data in areas of agreement and disagreement of existing land cover products. Remote Sens 2012, 4, 3143–3167.
[15]
Vancutsem, C.; Pekel, J.-F.; Kayitakire, F. Dynamic Mapping of Cropland Areas in Sub-Saharan Africa Using MODIS Time Series. Proceedings of the 6th International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Trento, Italy, 12–14 July 2011; pp. 25–28.
[16]
Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sens. Environ 2004, 93, 412–422.
[17]
Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the US Central Great Plains. Remote Sens. Environ 2008, 112, 1096–1116.
[18]
The Commission of the European Communities. Corine Land Cover, Available online: http://www.eea.europa.eu/publications/COR0-landcover (accessed on 20 December 2012).
[19]
Gregorio, A.D.; Jansen, L. Land Cover Classification System, Classification Concepts and User Manual; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2000.
[20]
Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-Wiki.Org: The use of crowd-sourcing to improve global land cover. Remote Sens 2009, 1, 345–354.
[21]
Vancutsem, C.; Pekel, J.-F.; Evrard, C.; Malaisse, F.; Defourny, P. Mapping and characterizing the vegetation types of the Democratic Republic of Congo using SPOT VEGETATION time series. Int. J. Appl. Earth Obs. Geoinf 2009, 11, 62–76.
[22]
Fritz, S.; See, L.; McCallum, I.; Schill, C.; Perger, C.; Obersteiner, M. Building a Crowd-Sourcing Tool for the Validation of Urban Extent and Gridded Population. In Computational Science and its Applications—ICCSA 2011; Springer: Berlin, Germany, 2011; 6783, pp. 39–50.