The mapping of changes in the distribution of insect-caused forest damage remains an important forest monitoring application and challenge. Efficient and accurate methods are required for mapping and monitoring changes in insect defoliation to inform forest management and reporting activities. In this research, we develop and evaluate a LiDAR-driven (Light Detection And Ranging) approach for mapping defoliation caused by the Common pine sawfly ( Diprion pini L .). Our method requires plot-level training data and airborne scanning LiDAR data. The approach is predicated on a forest canopy mask created by detecting forest canopy cover using LiDAR. The LiDAR returns that are reflected from the canopy (that is, returns > half of maximum plot tree height) are used in the prediction of the defoliation. Predictions of defoliation are made at plot-level, which enables a direct integration of the method to operational forest management planning while also providing additional value-added from inventory-focused LiDAR datasets. In addition to the method development, we evaluated the prediction accuracy and investigated the required pulse density for operational LiDAR-based mapping of defoliation. Our method proved to be suitable for the mapping of defoliated stands, resulting in an overall mapping accuracy of 84.3% and a Cohen’s kappa coefficient of 0.68.
Tkacz, B.; Moody, B.; Castillo, J.V.; Fenn, M.E. Forest health conditions in North America. Environ. Pollution 2008, 155, 409–425.
[3]
Moore, B.; Allard, G. Climate Change Impacts on Forest Health. Forest Health and Biosecurity Working Paper FBS/34E;; FAO: Rome, Italy, 2008.
[4]
Safranyik, L.; Carroll, A.L.; Régnière, J.; Langor, D.W.; Riel, W.G.; Shore, T.L.; Peter, B.; Cooke, B.J.; Nealis, V.G.; Taylor, S.W. Potential for range expansion of mountain pine beetle into the boreal forest of North America. Canad. Entomol 2010, 142, 415–442.
[5]
Lyytik?inen-Saarenmaa, P.; Tomppo, E. Impact of sawfly defoliation on growth of Scots pine Pinus sylvestris (Pinaceae) and associated economic losses. Bull. Entomol. Res 2002, 92, 137–140.
[6]
Wulder, M.A.; White, J.C.; Grills, D.; Nelson, T.; Coops, N.C.; Ebata, T. Aerial overview survey of the mountain pine beetle epidemic in British Columbia: Communication of impacts. BC J. Ecosyst. Manag 2009, 10, 45–58.
[7]
Sohlberg, S.; N?sset, E.; Hanssen, K.H.; Christiansen, E. Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning. Remote Sens. Environ 2006, 102, 364–376.
[8]
Kantola, T.; Vastaranta, M.; Yu, X.; Lyytik?inen-Saarenmaa, P.; Holopainen, M.; Talvitie, M.; Kaasalainen, S.; Solberg, S.; Hyypp?, J. Classification of defoliated trees using tree-level airborne laser scanning data combined with aerial images. Remote Sens 2010, 2, 2665–2679.
[9]
Karjalainen, M.; Kaasalainen, S.; Hyypp?, J.; Holopainen, M.; Lyytik?inen-Saarenmaa, P.; Krooks, A.; Jaakkola, A. SAR Satellite Images and Terrestrial Laser Scanning in Forest Damages Mapping in Finland. Proceedings of ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010. SP-686.
[10]
Solberg, S. Mapping gap fraction, LAI and defoliation using various ALS penetration variables. Int. J. Remote Sens 2010, 31, 1227–1244.
[11]
J?nsson, A.M.; Appelberg, G.; Harding, S.; B?rring, L. Spatio-temporal impact of climate change in the activity and voltinism of the spruce bark beetle, Ips. typographus. Glob. Change Biol 2009, 15, 486–499.
[12]
Lyytik?inen-Saarenmaa, P.; Holopainen, M.; Ilvesniemi, S.; Haapanen, R. Detecting pine sawfly defoliation by means of remote sensing and GIS. Forstschutz Aktuell 2008, 44, 14–15.
[13]
Wulder, M.A.; Ortlepp, S.M.; White, J.C.; Coops, N.C.; Coggins, S.B. Monitoring tree-level insect population dynamics with multi-scale and multi-source remote sensing. Spat. Sci 2008, 53, 49–61.
[14]
Juutinen, P.; Varama, M. Ruskean m?ntypisti?isen (Neodiprion sertifer) esiintyminen Suomessa vuosina 1966–83. Folia Forestalia 1986, 662, 1–39.
[15]
Lyytik?inen-Saarenmaa, P.; Niemel?, P.; Annila, E. Growth Responses and Mortality of Scots Pine (Pinus sylvestris L.) after a Pine Sawfly Outbreak. Proceedings of the International Symposium of IUFRO “Forest Insect Population Dynamics and Host Influences”, Kanazawa, Japan, 14–19 September 2003; pp. 81–85.
[16]
Metsaranta, J.M.; Kurz, W.A.; Neilson, E.T.; Stinson, G. Implications of future disturbance regimes on the carbon balance of Canada’s managed forest (2010–2100). Tellus 2010, 62, 719–728.
[17]
Tomppo, E. The Finnish National Forest Inventory. In Forest Inventory. Methodology and Applications (Managing Forest Ecosystems); Kangas, A., Maltamo, M., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 179–194.
[18]
Hall, R.J.; Skakun, R.S.; Arsenault, E.J. Remotely Sensed Data in the Mapping of Insect Defoliation. In Understanding Forest Disturbance and Spatial Pattern. Remote Sensing and GIS Approaches; Wulder, M.A., Franklin, S.E., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 85–111.
[19]
Wulder, M.A. Optical remote sensing techniques for the assessment of forest inventory and biophysical parameters. Progr. Phys. Geogr 1998, 22, 449–476.
[20]
Hyyppa, J.; Hyyppa, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens 2008, 29, 1339–1366.
[21]
N?sset, E. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS J. Photogramm 1997, 52, 49–56.
[22]
Hyypp?, J.; Inkinen, M. Detecting and estimating attributes for single trees using laser scanner. Photogramm. J. Fin 1999, 16, 27–42.
[23]
Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm 2010, 65, 581–590.
[24]
Vastaranta, M.; Korpela, I.; Uotila, M.; Hovi, A.; Holopainen, M. Area-Based Snow Damage Classification of Forest Canopies Using Bi-Temporal Lidar Data. Proceedings of ISPRS Workshop on Laser Scanning 2011, Calgary, AB, Canada, 29–31 August 2011; p. 5.
[25]
Vastaranta, M.; Korpela, I.; Uotila, A.; Hovi, A.; Holopainen, M. Mapping of snow-damaged trees in bi-temporal airborne LiDAR data. Eur. J. For. Res 2012, 131, 1217–1228.
[26]
N?sset, E.; Gobakken, T.; Holmgren, J.; Hyypp?, H.; Hyypp?, J.; Maltamo, M.; Nilsson, M.; Olsson, H.; Persson, ?.; S?derman, U. Laser scanning of forest resources: The Nordic experience. Scand. J. For. Res 2004, 19, 482–499.
[27]
N?sset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ 2002, 80, 88–99.
[28]
Talvitie, M.; Kantola, T.; Holopainen, M.; Lyytikainen-Saarenmaa, P. Adaptive cluster sampling in inventorying forest damage by the common pine sawfly (Diprion pini). J. For. Plan 2011, 16, 141–148.
Roesch, F.A., Jr. Adaptive cluster sampling for forest inventories. For. Sci 1993, 39, 655–669.
[31]
Eichhorn, J. Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Part. II. Visual Assessment of Crown Condition and Submanual on Visual Assessment of Crown Condition on Intensive Monitoring Plots; United Nations Economic Commission for Europe Convention on Long-range Transboundary Air Pollution: Hamburg, Germany, 1998.
[32]
Axelsson, P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models. Proceedings of XIX ISPRS Congress, Commission I–VII, Amsterdam, The Netherlands, 16–23 July 2000; pp. 110–117.
[33]
Vastaranta, M.; Holopainen, M.; Yu, X.; Hyypp?, J.; M?kinen, A.; Rasinm?ki, J.; Melkas, T.; Kaartinen, H.; Hyypp?, H. Effects of individual tree detection error sources on forest management planning calculations. Remote Sens. 2011, 3, 1614–1626.
[34]
Vauhkonen, J.; Ene, L.; Gupta, S.; Heinzel, J.; Holmgren, J.; Pitk?nen, J.; Solberg, S.; Wang, Y.; Weinacker, H.; Hauglin, K.M.; et al. Comparative testing of single-tree detection algorithms under different types of forest. Forestry 2012, 85, 27–40.
[35]
Kaartinen, H.; Hyypp?, J.; Yu, X.; Vastaranta, M.; Hyypp?, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf, F.; et al. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens 2012, 4, 950–974.
[36]
Persson, ?.; Holmgren, J.; S?derman, U. Detecting and measuring individual trees using an airborne laser scanner. Photogramm. Eng. Remote Sensing 2002, 68, 925–932.
[37]
Yu, X.; Hyypp?, J.; Vastaranta, M.; Holopainen, M. Predicting individual tree attributes from airborne laser point clouds based on random forest technique. ISPRS J. Photogramm 2011, 66, 28–37.
[38]
Breiman, L. Random forests. Mach. Learn 2001, 45, 5–32.
[39]
Crookston, N.L.; Finley, A.O. yaImpute: A R package for efficient nearest neighbor imputation routines variance estimation, and mapping, 2007–2010. Available online: http://cran.r-project.org (accessed on 18 October 2012).
[40]
Falkowski, M.; Hudak, A.; Crookston, N.; Gessler, P.; Smith, A. Landscape-scale parameterization of a tree-level forest growth model: A k-NN imputation approach incorporating LiDAR data. Can. J. For. Res 2010, 40, 184–199.
[41]
Hudak, A.; Crookston, N.; Evans, J.; Hall, D.; Falkowski, M. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sens. Environ 2008, 112, 2232–2245.
[42]
Latifi, H.; Nothdurft, A.; Koch, B. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors. Forestry 2010, 83, 395–407.
[43]
The R Project for Statistical Computing. Available online: http://www.r-project.org/ (accessed on 13 December 2012).
[44]
Kantola, T.; Lyytik?inen-Saarenmaa, P.; Vastaranta, M.; Kankare, V.; Yu, X.; Holopainen, M.; Talvitie, M.; Solberg, S.; Puolakka, P.; Hyypp?, J. Using High Density ALS Data in Plot Level Estimation of the Defoliation by the Common Pine Sawfly. Proceedings of SilviLaser 2011, 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems, University of Tasmania, Australia, 16–20 October 2011.
[45]
Ilvesniemi, S. (in Finnish); Pro Gradu; Mets?varojen k?yt?n laitos, Helsingin yliopisto: Helsinki, Finland, 2009; p. 62.