全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hidden Markov Models for Real-Time Estimation of Corn Progress Stages Using MODIS and Meteorological Data

DOI: 10.3390/rs5041734

Keywords: fractal dimension, hidden Markov model (HMM), phenology, time series

Full-Text   Cite this paper   Add to My Lib

Abstract:

Real-time estimation of crop progress stages is critical to the US agricultural economy and decision making. In this paper, a Hidden Markov Model (HMM) based method combining multisource features has been presented. The multisource features include mean Normalized Difference Vegetation Index (NDVI), fractal dimension, and Accumulated Growing Degree Days (AGDDs). In our case, these features are global variable, and measured in the state-level. Moreover, global feature in each Day of Year (DOY) would be impacted by multiple progress stages. Therefore, a mixture model is employed to model the observation probability distribution with all possible stage components. Then, a filtering based algorithm is utilized to estimate the proportion of each progress stage in the real-time. Experiments are conducted in the states of Iowa, Illinois and Nebraska in the USA, and our results are assessed and validated by the Crop Progress Reports (CPRs) of the National Agricultural Statistics Service (NASS). Finally, a quantitative comparison and analysis between our method and spectral pixel-wise based methods is presented. The results demonstrate the feasibility of the proposed method for the estimation of corn progress stages. The proposed method could be used as a supplementary tool in aid of field survey. Moreover, it also can be used to establish the progress stage estimation model for different types of crops.

References

[1]  USDA-OCE: Weekly Weather and Crop Bulletin, Available online: http://www.usda.gov/oce/weather/pubs/Weekly/Wwcb/index.htm (accessed on 18 November 2012).
[2]  Zhang, X.; Friedl, M.; Schaaf, M.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ 2003, 84, 471–475.
[3]  Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sens. Environ 2009, 113, 248–258.
[4]  Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ 2012, 123, 400–417.
[5]  Ricotta, C.; Avena, G.C. The remote sensing approach in broad-scale phenological studies. Appl. Veg. Sci 2000, 3, 117–122.
[6]  Sasaoka, K.; Chiba, S.; Saino, T. Climatic forcing and phytoplankton phenology over the subarctic north pacific from 1998 to 2006, as observed from ocean color data. Geophys. Res. Lett 2011, doi:10.1029/2011GL048299.
[7]  White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van LeeuWen, W.J.D.; et al. Intercomparison, interpretation, and assessment of spring phenology in north america estimated from remote sensing for 1982–2006. Glob. Chang. Biol 2009, 15, 2335–2359.
[8]  Diepen, C.A.; Wolf, J.; van Keulen, H. WOFOST: A simulation model of crop production. Soil Use Manage 1989, 5, 16–24.
[9]  St?ckle, C.O.; Donatelli, M.; Nelson, R. Cropsyst, a cropping systems simulation model. Eur. J. Agron 2003, 18, 289–307.
[10]  Jones, J.W.; Tsuji, G.Y.; Hoogenboom, G.; Hunt, L.A.; Thornton, P.K.; Wilkens, P.W.; Imamura, D.T.; Bowen, W.T.; Singh, U. Decision Support System for Agrotechnology Transfer: DSSAT V3. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 1998; pp. 157–177.
[11]  Saxton, K.E.; Porterand, M.A.; McMahon, T.A. Climatic impacts on dryland winter wheat by daily soil water and crop stress simulations. Agr. For. Meteorol 1992, 58, 177–192.
[12]  Kroes, J.G.; Dam, J.C.V.; Groenendijk, P.; Hendriks, R.F.A.; Jacobs, C.M.J. SWAP Version 3.2: Theory Description and User Manual. Alterra Report; Alterra: Wageningen, The Netherlands, 2008.
[13]  De Beurs, K.M.; Henebry, G.M. Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology. In Phenological Research: Methods for Environmental and Climate Change Analysis; Hudson, I.L., Keatley, M.R., Eds.; Springer-Verlag: New York, NY, USA, 2010.
[14]  Toukiloglou, P. Comparison of AVHRR, MODIS and VEGETATION for Land Cover Mapping and Drought Monitoring at 1 km Spatial ResolutionPh.D. Thesis, Cranfield University, Bedford, UK. 2007.
[15]  Reed, B.C.; Brown, J.F.; Vanderzee, D.; Loveland, T.R.; Merchant, J.W.; Donald, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci 1994, 5, 703–714.
[16]  Ren, J.; Chen, Z.; Zhou, Q. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth Obs. Geoinf 2008, 10, 403–413.
[17]  Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens 2013, 5, 949–981.
[18]  Culbert, P.D.; Pidgeon, A.M.; Louis, V.S.; Bash, D.; Radeloff, V.C. The impact of phenological variation on texture measures of remotely sensed imagery. IEEE J. Sel. Top. Appl. Earth Observ 2009, 2, 299–309.
[19]  Shen, Y.; Di, L.; Yu, G.; Wu, L. Correlation between corn progress stages and fractal dimension from MODIS-NDVI time series. IEEE Geosci. Remote Sens. Lett 2013, 10, 1–5.
[20]  USDA-NASS: National Crop Progress Terms and Definitions, Available online: http://www.nass.usda.gov/Publications/NationalCropProgress/TermsandDefinitions/index.asp (accessed on 18 November 2012).
[21]  Elliott, R.J.; Siu, T.K. An HMM approach for optimal investment of an insurer. Int. J. Robust Nonlinear Contr 2012, 22, 778–807.
[22]  Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286.
[23]  Krogh, A.; Brown, M.; Mian, I.S.; Sj?lander, K.; Haussler, D. Hidden Markov models in computational biology: Applications to protein modeling. J. Mol. Biol 1994, 235, 1501–1531.
[24]  Aurdal, L.; Bang, H.R.; Eikvil, L.; Solberg, R.; Vikhamar, D.; Solberg, A. Hidden Markov Models Applied to Vegetation Dynamics Analysis Using Satellite Remote Sensing. Proceedings of International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Biloxi, MS, USA, 16–18 May 2005; pp. 220–224.
[25]  Leite, P.; Feitosa, R.; Formaggio, A.; Costa, G.; Pakzad, K.; Sanches, I. Hidden Markov models for crop recognition in remote sensing image sequences. Pattern Recognition Lett 2011, 32, 19–26.
[26]  Viovy, N.; Saint, G. Hidden Markov models applied to vegetation dynamics analysis using satellite remote sensing. IEEE Trans. Geosci. Remote Sens 1994, 32, 906–917.
[27]  The United States Historical Climatology Network (USHCN), Available online: http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html (accessed on 18 November 2012).
[28]  Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens 1986, 7, 1417–1434.
[29]  Wiebold, B. Growing Degree Days and Corn Maturity. Technical Report; University of Missouri: Columbia, MO, USA, 2002.
[30]  Thiessen, A.H. Precipitation averages for large areas. Mon. Wea. Rev 1911, 39, 1082–1089.
[31]  Trudgill, D.L.; Honek, A.; Li, D.; van Straalen, N.M. Thermal time-concepts and utility. Ann. Appl. Biol 2005, 146, 1–14.
[32]  McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agr. Forest Meteorol 1997, 87, 291–300.
[33]  Jaakkola, T.S. Machine Learning, Lecture Notes 19: Hidden Markov Models (HMMs), 2006. Available online: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/lec19.pdf (accessed on 18 November 2012).
[34]  Srihari, S.N. Machine Learning and Probabilistic Graphical Models Course: Hidden Markov Models, 2011. Available online: http://www.cedar.buffalo.edu/srihari/CSE574/index.html (accessed on 18 November 2012).
[35]  Knab, B.; Schliep, A.; Steckemetz, B.; Wichern, B. Model-Based Clustering with Hidden Markov Models and its Application to Financial Time-Series Data. In Between Data Science and Applied Data Analysis; Schader, M., Gaul, W., Vichi, M., Eds.; Springer: New York, NY, USA, 2003; pp. 561–569.
[36]  Seifert, M.; Strickert, M.; Schliep, A.; Grosse, I. Exploiting prior knowledge and gene distances in the analysis of tumor expression profiles with extended Hidden Markov Models. Bioinformatics 2011, 27, 1645–1652.
[37]  Sacks, W.J.; Kucharik, C.J. Crop management and phenology trends in the U.S. corn belt: Impacts on yields, evapotranspiration and energy balance. Agr. Forest Meteorol 2011, 151, 882–894.
[38]  Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 1977, 39, 1–38.
[39]  Heij, C.; de Boer, P.; Franses, P.H.; Kloek, T.; van Dijk, H.K. Econometric Methods with Applications in Business and Economics; Oxford University Press Inc: New York, NY, USA, 2004.
[40]  Yu, G.; Di, L.; Yang, Z.; Shen, Y.; Zhang, B.; Chen, Z. Corn Growth Stage Estimation Using Time Series Vegetation Index. Proceedings of 2012 First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012; pp. 1–6.
[41]  Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A. Detecting spatiotemporal changes of corn developmental stages in the U.S. corn belt using MODIS WDRVI data. IEEE Trans. Geosci. Remote Sens 2011, 49, 1926–1936.
[42]  Lee, L. High-order hidden Markov model and application to continuous mandarin digit recognition. J. Inf. Sci. Eng 2011, 27, 1919–1930.
[43]  Mari, J.F.; Haton, J.P.; Kriouile, A. Automatic word recognition based on second-order hidden Markov models. IEEE Trans. Speech Audio Proc 1997, 5, 22–25.
[44]  Seifert, M.; Cortijo, S.; Colomé-Tatché, M.; Johannes, Frank; Roudier, F.; Colot, V. MeDIP-HMM: Genome-wide identification of distinct DNA methylation states from high-density tiling arrays. Bioinformatics 2012, doi:10.1093/bioinformatics/bts562.
[45]  Seifert, M.; Gohr, A.; Strickert, M.; Grosse, I. Parsimonious higher-order hidden Markov models for improved array-CGH analysis with applications to Arabidopsis thaliana. PLoS Comp. Biol 2012, 8, 1–15.
[46]  Derrode, S.; Carincotte, C.; Bourennane, S. Unsupervised Image Segmentation Based on High-Order Hidden MARKOV Chains. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Marseille, France, 17–21 May 2004; pp. 769–772.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133