全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Image-Based Coral Reef Classification and Thematic Mapping

DOI: 10.3390/rs5041809

Keywords: automated coral reef classification, benthic habitat classification, optical imagery, texture feature, kernel mapping, support vector machine, opponent angle, thematic mapping, optical mapping, probability density weighted mean distance, local binary pattern, grey level co-occurrence matrix, low resolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos.

References

[1]  Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol 2003, 18, 306–314.
[2]  Kohler, K.E.; Gill, S.M. Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci 2006, 32, 1259–1269.
[3]  Pican, N.; Trucco, E.; Ross, M.; Lane, D.; Petillot, Y.; Tena Ruiz, I. Texture Analysis for Seabed Classification: Co-Occurrence Matrices vs. Self-Organizing Maps. Proceedings of OCEANS ’98, Nice, France, 28 September–01 October 1998; 1, pp. 424–428.
[4]  Beijbom, O.; Edmunds, P.J.; Kline, D.I.; Mitchell, B.G.; Kriegman, D. Automated Annotation of Coral Reef Survey Images. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island, 16–21 June 2012.
[5]  Gracias, N.; Negahdaripour, S.; Neumann, L.; Prados, R.; Garcia, R. A motion compensated filtering approach to remove sunlight flicker in shallow water images. Oceans 2008, 2008, 1–7.
[6]  Schechner, Y.Y.; Karpel, N. Attenuating Natural Flicker Patterns. Proceedings of IEEE/MTS OCEANS 04 Conference, Kobe, Japan, 9–12 November 2004.
[7]  Shihavuddin, A.S.M.; Gracias, N.; Garcia, R. Online Sunflicker Removal using Dynamic Texture Prediction. Proceedings of International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Rome, Italy, 24–26 February, 2012; pp. 161–167.
[8]  Pizarro, O.; Rigby, P.; Johnson-Roberson, M.; Williams, S.; Colquhoun, J. Towards Image-Based Marine Habitat Classification. Proceedings of OCEANS 08, Quebec City, QC, Canada, 15–18 September 2008.
[9]  Marcos, M.; Shiela, A.; David, L.; Pe?aflor, E.; Ticzon, V.; Soriano, M. Automated benthic counting of living and non-living components in Ngedarrak Reef, Palau via subsurface underwater video. Environ. Monit. Assess 2008, 145, 177–184.
[10]  Stokes, M.D.; Deane, G.B. Automated processing of coral reef benthic images. Limnol. Oceanogr. Methods 2009, 7, 157–168.
[11]  Padmavathi, G.; Muthukumar, M.; Thakur, S. Kernel Principal Component Analysis Feature Detection and Classification for Underwater Images. Proceedings of 3rd International Congress on Image and Signal Processing (CISP), Yantai, China, 16–18 October 2010; 2, pp. 983–988.
[12]  Marcos, M.; Angeli, S.; David, L.; Peaflor, E.; Ticzon, V.; Soriano, M. Automated benthic counting of living and non-living components in Ngedarrak Reef, Palau via subsurface underwater video. Environ. Monit. Assess 2008, 145, 177–184.
[13]  Mehta, A.; Ribeiro, E.; Gilner, J.; van Woesik, R. Coral Reef Texture Classification using Support Vector Machines. Proceedings of International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP), Barcelona, Spain, 8–11 March 2007; pp. 302–310.
[14]  Gleason, A.; Reid, R.; Voss, K. Automated Classification of Underwater Multispectral Imagery for Coral Reef Monitoring. Proceedings of OCEANS 07, Miami, FL, USA, 29 September–4 October 2007; pp. 1–8.
[15]  Johnson-Roberson, M.; Kumar, S.; Willams, S. Segmentation and Classification of Coral for Oceanographic Surveys: A Semi-Supervised Machine Learning Approach. Proceedings of OCEANS 2006, Asia Pacific, Singapore, 16–19 May 2007.
[16]  Johnson-Roberson, M.; Kumar, S.; Pizarro, O.; Willams, S. Stereoscopic Imaging for Coral Segmentation and Classification. Proceedings of OCEANS 06, Singapore, 18–21 September 2006; pp. 1–6.
[17]  Clement, R.; Dunbabin, M.; Wyeth, G. Toward Robust Image Detection of Crown-of-thorns Starfish for Autonomous Population Monitoring. In Australasian Conference on Robotics & Automation; Sammut, C., Ed.; Australian Robotics and Automation Association Inc.: Sydney, Australia, 2005.
[18]  Soriano, M.; Marcos, S.; Saloma, C.; Quibilan, M.; Alino, P. Image Classification of Coral Reef Components from Underwater Color Video. Proceedings of 2001 MTS/IEEE Conference and Exhibition OCEANS, Honolulu, HI, USA, 5–8 November 2001; 2, pp. 1008–1013.
[19]  Caputo, B.; Hayman, E.; Fritz, M.; Eklundh, J.O. Classifying materials in the real world. Image Vis. Comput 2010, 28, 150–163.
[20]  Zhang, J.; Lazebnik, S.; Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study. Int. J. Comput. Vis 2007, 73, 213–238.
[21]  Zuiderveld, K. Contrast Limited Adaptive Histogram Equalization. Graphics GEMs IV; Academic Press Professional, Inc.: San Diego, CA, USA, 1994; pp. 474–485.
[22]  Finlayson, G.D.; Schiele, B.; Crowley, J.L. Comprehensive Colour Image Normalization. Proceedings of ECCV'98 Fifth European Conference on Computer Vision, Freiburg, Germany, 2–6 June 1998; 1406, pp. 475–490.
[23]  Gehler, P.; Nowozin, S. On Feature Combination for Multiclass Object Classification. Proceedings of IEEE 12th International Conference on Computer Vision (ICCV), Kyoto, Japan, 29 September–2 October 2009; pp. 221–228.
[24]  Haley, G.; Manjunath, B. Rotation-invariant texture classification using a complete space-frequency model. IEEE Trans. Image Process 1999, 8, 255–269.
[25]  Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621.
[26]  Soh, L.; Tsatsoulis, C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens 1999, 37, 780–795.
[27]  Clausi, D.A. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens 2002, 28, 45–62.
[28]  Guo, Z.; Zhang, L.; Zhang, D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Pattern Anal. Mach. Intell 2010, 19, 1657–1663.
[29]  Van de Weijer, J.; Schmid, C. Coloring Local Feature Extraction. Proceedings of the 9th European Conference on Computer Vision ECCV’06, Graz, Austria, 7–13 May 2006; pp. 334–348.
[30]  Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K. Fisher Discriminant Analysis with Kernels. Proceedings of the 1999 IEEE Signal Processing Society Workshop, Neural Networks for Signal Processing IX, 1999, Berlin, Germany, 25 August 1999; pp. 41–48.
[31]  Ruderman, D.L. The statistics of natural images. Netw. Comput. Nat. Syst 1994, 4, 517–548.
[32]  Lirman, D.; Gracias, N.; Gintert, B.; Gleason, A.C.R.; Deangelo, G.; Gonzalez, M.; Martinez, E.; Reid, R.P. Damage and Recovery Assessment of Vessel Grounding Injuries on Coral Reef Habitats Using Georeferenced Landscape Video Mosaics. Limnol. Oceanogr.: Methods 2010, 8, 88–97.
[33]  Escartin, J.; Garcia, R.; Delaunoy, O.; Ferrer, J.; Gracias, N.; Elibol, A.; Cufi, X.; Neumann, L.; Fornari, D.J.; Humphris, S.E. Globally aligned photomosaic of the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge, 37°18.5′N): Release of georeferenced data, mosaic construction, and viewing software. Geochem. Geophys. Geosyst. 2008, 9, doi:10.1029/2008GC002204.
[34]  Lirman, D.; Gracias, N.; Gintert, B.; Gleason, A.; Reid, P.; Negahdaripour, S.; Kramer, P. Development and application of a video-mosaic survey technology to document the status of coral reef communities. Environ. Monit. Assess 2007, 125, 59–73.
[35]  Kohavi, R. A. Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal, QC, Canada, 20–25 August 1995; pp. 1137–1143.
[36]  Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data; Lewis Publishers: Boca Raton, FL, USA, 1999; p. 137.
[37]  Loya, Y. The Coral Reefs of Eilat; Past, Present and Future: Three Decades of Coral Community Structure Studies. In Coral Reef Health and Disease; Springer-Verlag: Berlin/Heidelberg, Germany, 2004; pp. 1–34.
[38]  Garcia, S.; Derrac, J.; Cano, J.; Herrera, F. Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study. IEEE Trans. Pattern Anal. Mach. Intell 2012, 34, 417–435.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133