全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multisensor NDVI-Based Monitoring of the Tundra-Taiga Interface (Mealy Mountains, Labrador, Canada)

DOI: 10.3390/rs5031066

Keywords: ASTER, Canada, Labrador, Landsat, multisensor, multitemporal, Normalized Difference Vegetation Index (NDVI), Subarctic, tree line, tundra-taiga interface, SPOT

Full-Text   Cite this paper   Add to My Lib

Abstract:

The analysis of a series of five normalized difference vegetation index (NDVI) images produced information about a Labrador (Canada) portion of the tundra-taiga interface. The twenty-five year observation period ranges from 1983 to 2008. The series composed of Landsat, SPOT and ASTER images, provided insight into regional scale characteristics of the tundra-taiga interface that is usually monitored from coarse resolution images. The image set was analyzed by considering an ordinal classification of the NDVI to account for the cumulative effect of differences of near-infrared spectral resolutions, the temperature anomalies, and atmospheric conditions. An increasing trend of the median values in the low, intermediate and high NDVI classes is clearly marked while accounting for variations attributed to cross-sensor radiometry, phenology and atmospheric disturbances. An encroachment of the forest on the tundra for the whole study area was estimated at 0 to 60 m, depending on the period of observation, as calculated by the difference between the median retreat and advance of an estimated location of the tree line. In small sections, advances and retreats of up to 320 m are reported for the most recent four- and seven-year periods of observations.

References

[1]  Chen, W. IPY CiCAT Field Measurement Protocol for Mapping Canada’s Arctic Vegetation, Version 4.0; Natural Resources: Ottawa, ON, Canada, 2007.
[2]  Walker, D.A.; Auerbach, N.A.; Shippert, M.M. NDVI, biomass, and landscape evolution of glaciated terrain in northern Alaska. Polar Rec 1995, 31, 169–178.
[3]  Kelley, A.M.; Epstein, H.E.; Walker, D.A. Role of vegetation and climate in permafrost active layer depth in Arctic tundra of Northern Alaska and Canada. J. Glaciol. Geocryol 2004, 26, 269–274.
[4]  Raynolds, M.K.; Walker, D.A.; Maier, H.A. NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sens. Env 2006, 102, 271–281.
[5]  Engstrom, R.; Hope, A.; Kwon, H.; Stow, D. The relationship between soil moisture and NDVI near Barrow, Alaska. Phys. Geog 2008, 29, 38–53.
[6]  Munger, C.A.; Walker, D.A.; Maier, H.A.; Hamilton, T.D. Spatial Analysis of Glacial Geology, Surficial Geomorphology, and Vegetation in the Toolik Lake Region: Relevance to Past and Future Land-Cover Changes. Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 28 June–3 July 2008; pp. 1255–1260.
[7]  Van Wijk, M.T.; Williams, M. Optical instruments for measuring leaf area index in low vegetation: application in Arctic ecosystems. Ecol. Appl 2005, 15, 1462–1470.
[8]  Blok, D.; Schaepman-Strub, G.; Bartholomeus, H.; Heijmans, M.M.P.D.; Maximov, T.C.; Berendse, F. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett 2011, 6, 035502.
[9]  Stow, D.; Hope, A.; Boyton, W.; Phinn, S.; Walker, D.; Auerbach, N. Satellite-derived vegetation index and cover type maps for estimating carbon dioxide flux for Arctic tundra regions. Geomorphology 1998, 21, 313–327.
[10]  Walker, D.A.; Epstein, H.E.; Jia, G.J.; Balser, A.; Copass, C.; Edwards, E.J.; Gould, W.A.; Hollingsworth, J.; Knudson, J.; Maier, H.A.; et al. Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types and extrapolation to the circumpolar Arctic. J. Geophys. Res 2003, 108, 8169.
[11]  Hope, A.S.; Pence, K.R.; Stow, D.A. NDVI from low altitude aircraft and composited NOAA AVHRR data for scaling Arctic ecosystem fluxes. Int. J. Remote Sens 2004, 25, 4237–4250.
[12]  Wang, M.; Overland, J.E. Detecting Arctic climate change using Koppen climate classification. Climatic Change 2004, 67, 43–62.
[13]  Olthof, I.; Latifovic, R. Short-term response of Arctic vegetation NDVI to temperature anomalies. Int. J. Remote Sens 2007, 28, 4823–4840.
[14]  Raynolds, M.K.; Comiso, J.C.; Walker, D.A.; Verbyla, D. Relationship between satellite-derived land surface temperatures, Arctic vegetation types, and NDVI. Remote Sens. Environ 2008, 112, 1884–1894.
[15]  Zhang, K.; Kimball, J.S.; Mu, Q.; Jones, L.A.; Goetz, S.J.; Running, S.W. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol 2008, 379, 92–110.
[16]  Hansen, M.C.; DeFries, R.S.; Townshend, J.R.; Carroll, G.M.; Dimiceli, C.; Sohlberg, R.A. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interact 2003, 7, 1–15.
[17]  Yoshioka, H.; Miura, T.; Huete, A.R. An isoline-based translation technique of spectral vegetation index using EO-1 Hyperion data. IEEE Trans. Geosci. Remote 2003, 41, 1363–1372.
[18]  Olthof, I.; Pouliot, D.; Fernandes, R.; Latifovic, R. Landsat-7 ETM+ radiometric normalization comparison for northern mapping applications. Remote Sens. Environ 2005, 95, 388–398.
[19]  Brown, M.E.; Pinzón, J.E.; Didan, K.; Morisette, J.T.; Tucker, C.J. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Trans. Geosci. Remote 2006, 44, 1787–1793.
[20]  Stow, D.; Petersen, A.; Hope, A.; Engstrom, R.; Coulter, L. Greenness trends of Arctic tundra vegetation in the 1990s: Comparison of two NDVI data sets from NOAA AVHRR systems. Int. J. Remote Sens 2007, 28, 4807–4822.
[21]  Stow, D.; Daeschner, S.; Boyton, W.; Hope, A. Arctic tundra functional types by classification of single-date and AVHRR bi-weekly NDVI composite datasets. Int. J. Remote Sens 2000, 21, 1773–1779.
[22]  Laidler, G.J.; Treitz, P.M.; Atkinson, D.M. Remote sensing of arctic vegetation: Relations between the NDVI, spatial resolution and vegetation cover on Boothia Peninsula, Nunavut. Arctic 2008, 61, 1–13.
[23]  Olthof, I.; Pouliot, D. Treeline vegetation composition and change in Canada’s western Subarctic from AVHRR and canopy reflectance modeling. Remote Sens. Environ 2010, 114, 805–815.
[24]  Van Leeuwen, W.J.D.; Orr, B.J.; Marsh, S.E.; Herrmann, S.M. Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications. Remote Sens. Environ 2006, 100, 67–81.
[25]  Teillet, P.M.; Fedosejevs, G.; Thome, K.J.; Barker, J.L. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ 2007, 110, 393–409.
[26]  Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ 2009, 113, 893–903.
[27]  Jordan, C.F. Derivation of leaf area index from quality of light on the forest floor. Ecology 1969, 50, 663–666.
[28]  Hope, A.S.; Engstrom, R.; Stow, D. Relationship between AVHRR surface temperature and NDVI in Arctic tundra ecosystems. Int. J. Remote Sens 2004, 26, 1771–1776.
[29]  Narasimhan, R.; Stow, D. Daily MODIS products for analyzing early season vegetation dynamics across the North Slope of Alaska. Remote Sens. Environ 2010, 114, 1251–1262.
[30]  Pouliot, D.; Latifovic, R.; Olthof, I. Trend in vegetation NDVI from 1 km AVHRR data over Canada for the period 1985–2006. Int. J. Remote Sens 2009, 30, 149–168.
[31]  Scott, P.A.; Hansell, R.I.C. Development of white spruce tree islands in the shrub zone of the forest-tundra. Arctic 2000, 55, 238–246.
[32]  Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Naurzabaev, M.M. Forest-tundra larch forests and climatic trends. Russ. J. Ecol 2006, 37, 291–298.
[33]  Rees, W.G. Characterisation of Arctic treelines by LiDAR and multispectral imagery. Polar Rec 2007, 43, 345–352.
[34]  Shippert, M.; Walker, D.A.; Auerbach, N.A. Biomass and leaf area index maps derived from SPOT images for Toolik Lake and Imnavait Creek area, Alaska. Polar Rec 1995, 31, 147–154.
[35]  Riedel, S.M.; Epstein, H.E.; Walker, D.A. Biotic controls over spectral reflectance of Arctic tundra vegetation. Int. J. Remote Sens 2005, 26, 2391–2405.
[36]  Regmi, P.; Grosse, G.; Jones, M.C.; Jones, B.M.; Anthony, K.W. Characterizing post-drainage succession in thermokarst lake basins on the Seward Peninsula, Alaska with TerraSAR-X backscatter and Landsat-based NDVI data. Remote Sens 2012, 4, 3741–3765.
[37]  Atkinson, D.M.; Treitz, P. Arctic ecological classifications derived from vegetation community and satellite spectral data. Remote Sens 2012, 4, 3948–3971.
[38]  Bubier, J.L.; Rock, B.N.; Crill, P.M. Spectral reflectance measurements of boreal wetland and forest mosses. J. Geophys. Res 1997, 102, 29489–29494.
[39]  Ranson, K.J.; Sun, G.; Kharuk, V.I.; Kovacs, K. Assessing tundra-taiga boundary with multi-sensor satellite data. Remote Sens. Environ 2004, 93, 283–295.
[40]  Chen, X.; Vierling, L.; Deering, D. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sens. Environ 2005, 98, 63–79.
[41]  Kumpula, T.; Forbes, B.C.; Stammler, F.; Meschtyb, N. Dynamics of a coupled system: Multi-Resolution remote sensing in assessing social-ecological responses during 25 years of gas field development in Arctic Russia. Remote Sens 2012, 4, 1046–1068.
[42]  Zhang, Y.; Xu, M.; Adams, J.; Wang, X. Can Landsat imagery detect tree line dynamics? Int. J. Remote Sens 2009, 30, 1327–1340.
[43]  Batterson, M.; Liverman, D. Landscapes of Newfoundland and Labrador Report 95–3; Newfoundland and Labrador-Department of Natural Resources: St. John’s, NL, Canada, 1995.
[44]  Clark, C.D.; Knight, J.K.; Gray, J.T. Geomorphological reconstruction of the Labrador sector of the Laurentide Ice Sheet. Quaternary Sci. Rev 2000, 19, 1343–1366.
[45]  Roberts, B.A.; Simon, N.P.P.; Deering, K.W. The forests and woodlands of Labrador, Canada: ecology, distribution and future management. Ecol. Res 2006, 21, 868–880.
[46]  Ryan, A.G. Native Trees and Shrubs of Newfoundland and Labrador; Department of Environment and Lands: St. John’s, NL, Canada, 1978.
[47]  Munier, A. Seedling Establishment and Climate Change: The Potential for Forest Displacement of Alpine Tundra (Mealy Mountains, Labrador, Canada)M.Sc. Thesis, Memorial University, St. John’s, NL, Canada, 2006.
[48]  Callaghan, T.V.; Crawford, R.M.M.; Eronen, M.; Hofgaard, A.; Payette, S.; Rees, W.G.; Skre, O.; Sveinbj?rnsson, B.; Vlassova, T.K.; Werkman, B.R. The dynamics of the tundra-taiga boundary: An overview and suggested coordinated and integrated approach to research. Ambio 2002, 12, 2–5.
[49]  Skre, O.; Baxter, R.; Crawford, R.M.M.; Callaghan, T.V.; Fedorkov, A. How will the tundra-taiga interface respond to climate change? Ambio 2002, 8, 37–46.
[50]  Hermanutz, L. Personal Webpage; Memorial University: St. John’s, NL, Canada, 2011. Available online: http://www.mun.ca/biology/lhermanutz/lhermanutz.php (accessed on 10 December 2012).
[51]  Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ 1979, 8, 127–150.
[52]  Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. Proceedings of NASA. Goddard Space Flight Center 3nd ERTS-1 Symposium, Greenbelt, MD, USA, 5–9 March 1974; 1, pp. 309–317.
[53]  Natural Resources Canada. Canada Centre for Remote Sensing Earth Observation Catalogue—CEOcat, Available online: http://ceocat.ccrs.nrcan.gc.ca/portal/index.html (accessed on 10 December 2012).
[54]  United States Geological Survey. Earth Explorer, Available online: http://earthexplorer.usgs.gov (accessed on 10 December 2012).
[55]  Jet Propulsion Laboratory-National Aeronautics and Space Administration. Advanced Space Thermal Emission and Reflection Radiometer Instrument Characteristics.
[56]  Belgian Science Policy. Satellites and Sensors: Satellite Pour l’Observation de la Terre, Available online: http://eoedu.belspo.be/en/satellites/index.htm (accessed on 10 December 2012).
[57]  Hall, F.G.; Shimabukuro, Y.E.; Huemmrich, K.F. Remote sensing of forest biophysical structure using mixture decomposition and geometric reflectance models. Ecol. Appl 1995, 5, 993–1013.
[58]  Sturm, M.; Racine, C.; Tape, K. Increasing shrub abundance in the Arctic. Nature 2001, 411, 546–547.
[59]  Nakaji, T.; Oguma, H.; Fujinuma, Y. Seasonal changes in the relationship between photochemical reflectance index and photosynthetic light use efficiency of Japanese larch needles. Int. J. Remote Sens 2006, 27, 493–509.
[60]  Kobayashi, H.; Suzuki, R.; Kobayashi, S. Reflectance seasonality and its relation to the canopy leaf area index in an eastern Siberian larch forest: Multi-satellite data and radiative transfer analyses. Remote Sens. Environ 2007, 106, 238–252.
[61]  Hope, A.S.; Kimball, J.S.; Stow, D.A. The relationship between tussock tundra spectral reflectance properties and biomass and vegetation composition. Int. J. Remote Sens 1993, 14, 1861–1874.
[62]  Jia, G.J.; Epstein, H.E.; Walker, D.A. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Global Change Biol. 2006, 12, 42–55.
[63]  Vogelmann, J.E.; Moss, D.M. Spectral reflectance measurements in the Genus ‘Sphagnum’. Remote Sens. Environ 1993, 45, 273–279.
[64]  Rees, W.G.; Tutubalina, O.V.; Golubeva, E.I. Reflectance spectra of Subarctic lichens between 400 and 2400 nm. Remote Sens. Environ 2004, 90, 281–292.
[65]  Miura, T.; Huete, A.; Yoshioka, H. An empirical investigation of cross-sensor relationships of NDVI and red/near-infrared reflectance using EO-1 Hyperion data. Remote Sens. Environ 2006, 100, 223–236.
[66]  Steven, M.D.; Malthus, T.J.; Baret, F.; Xu, H.; Chopping, M.J. Intercalibration of vegetation indices from different sensor systems. Remote Sens. Environ 2003, 88, 412–422.
[67]  Tutubalina, O.V.; Rees, W.G. Vegetation degradation in a permafrost region as seen from space: Noril'sk, 1961–1999. Cold Reg. Sci. Technol 2001, 32, 191–203.
[68]  Forbes, B.C.; Fauria, M.M.; Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biol 2010, 16, 1542–1554.
[69]  Environment Canada-National Climate Data and Information Archive. Hourly Data Report, Available online: http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html (accessed on 10 December 2012).
[70]  Kaufman, Y.J.; Tanré, D. Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From AVHRR to EOS-MODIS. Remote Sens. Environ 1996, 55, 65–79.
[71]  Sing, A. Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens 1989, 10, 989–1003.
[72]  Mas, J.-F. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote Sens 1999, 20, 139–152.
[73]  Work, E.A.; Gilmer, D.S. Utilization of satellite data for inventorying Prairie ponds and lakes. Photogramm. Eng. Rem. S 1976, 42, 685–694.
[74]  Chavez, P.S. Image-based atmospheric corrections—Revisited and improved. Photogramm. Eng. Rem. S 1996, 62, 1025–1036.
[75]  Heo, J.; Fitzhugh, F.W. A standardized radiometric normalization method for change detection using remotely sensed imagery. Photogramm. Eng. Rem. S 2000, 66, 173–181.
[76]  Coshall, J. The Application of Nonparametric Statistical Tests in Geography; The Business School: London, UK, 1989.
[77]  Hofgaard, A.; T?mmervik, H.; Rees, G.; Hanssen, F. Latitudinal forest advance in northernmost Norway since the early 20th Century. J. Biogeogr. 2012, 12, doi:10.1111/jbi.12053.
[78]  Munier, A.; Hermanutz, L.; Jacobs, J.D.; Lewis, K. The interacting effects of temperature, ground disturbance, and herbivory on seedling establishment: Implications for treeline advance with climate warming. Plant Ecol 2010, 210, 19–30.
[79]  Wheeler, J.A.; Hermanutz, L.; Marino, P.M. Feathermoss seedbeds facilitate black spruce seedling recruitment in the forest-tundra ecotone (Labrador, Canada). Oikos 2011, 120, 1263–1271.
[80]  Payette, S. Contrasted dynamics of northern Labrador tree lines caused by climate change and migrational lag. Ecology 2007, 88, 770–780.
[81]  Ward, H. Characterizing the Tundra Taiga Interface Using Radarsat-2, Mealy Mountains, LabradorM.Sc. Thesis, Memorial University, St. John’s, NL, Canada. 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133