全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Variation of NDVI with the Principal Climatic Elements in the Tibetan Plateau

DOI: 10.3390/rs5041894

Keywords: vegetation index, precipitation, temperature, Tibetan Plateau

Full-Text   Cite this paper   Add to My Lib

Abstract:

Temperature and precipitation have been separately reported to be the main factors affecting the Normalized Difference Vegetation Index (NDVI) in the Tibetan Plateau. The effects of the main climatic factors on the yearly maximum NDVI (MNDVI) in the Tibetan Plateau were examined on different scales. The result underscored the observation that both precipitation and temperature affect MNDVI based on weather stations or physico-geographical regions. Precipitation is the main climatic factor that affects the vegetation cover in the entire Tibetan Plateau. Both annual mean precipitation and annual mean precipitation of the growing period are related with MNDVI, and the positive correlations are manifested in a linear manner. By comparison, the weakly correlated current between MNDVI and all the temperature indexes is observed in the study area.

References

[1]  Wang, G.X.; Bai, W.; Li, N.; Hu, H.C. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China. Clim. Change 2011, 106, 463–482.
[2]  Yu, H.Y.; Luedeling, E.; Xu, J.C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156.
[3]  Wang, G.X.; Cheng, G.D. Eco-environmental changes and causative analysis in the source regions of the Yangtze and Yellow Rivers, China. Environmentalist 2000, 20, 221–232.
[4]  Fan, J.W.; Shao, Q.Q.; Liu, J.Y.; Wang, J.B.; Harris, W.; Chen, Z.Q.; Zhong, H.P.; Xu, X.L.; Liu, G.R. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai–Tibet Plateau, China. Environ. Monit. Assess 2010, 170, 571–584.
[5]  Gurgel, H.C.; Ferreira, N.J. Annual and interannual variability of NDVI in Brazil and its connections with climate. Int. J. Remote Sens 2003, 24, 3595–3609.
[6]  Scharlemann, J.P.W.; Benz, D.; Hay, S.I.; Purse, B.V.; Tatem, A.J. Global data for ecology and epidemiology: A novel algorithm for temporal fourier processing MODIS data. PLoS ONE 2008, 3, doi:10.1371/journal.pone.0001408.
[7]  Wang, J.; Meng, J.J.; Cai, Y.L. Assessing vegetation dynamics impacted by climate change in the southwestern karst region of China with AVHRR NDVI and AVHRR NPP time-series. Environ. Geol 2008, 54, 1185–1195.
[8]  Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol 2005, 20, 503–510.
[9]  Milich, L.; Weiss, E. GAC NDVI images: Relationship to rainfall and potential evaporation in the grazing lands of the Gourma (northern Sahel) and in the croplands of the Niger-Nigeria border (southern Sahel). Int. J. Remote Sens 2000, 21, 261–280.
[10]  Gao, Q.Z.; Wan, Y.F.; Xu, H.M.; Li, Y.; Jiangcun, W.Z.; Borjigid, A. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quat. Int 2010, 226, 143–150.
[11]  Chu, D.; Lu, L.X.; Zhang, T.G. Sensitivity of Normalized Difference Vegetation Index (NDVI) to seasonal and inter-annual climate conditions in the Lhasa area, Tibetan Plateau, China. Arct. Antarct. Alp. Res 2007, 39, 635–641.
[12]  Piao, S.L.; Fang, J.Y.; Liu, H.; Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett 2005, 32, L06402.
[13]  Wang, X.D.; Li, M.H.; Liu, S.Z.; Liu, G.C. Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau, China. Geoderma 2006, 134, 56–61.
[14]  Sun, H.L. The National Physical Atlas of China (in Chinese); Cartographic Publishing House: Beijing, China, 1999.
[15]  Zhao, J. Physical Geography of China (in Chinese); Higher Education Press: Beijing, China, 1998.
[16]  China Meteorological Data Sharing Service. Available online: http://cdc.cma.gov.cn/ (accessed on 11 May 2012).
[17]  Environment and Ecological Science Data Center for West China. Available online: http://westdc.westgis.ac.cn/ (accessed on 21 May 2012).
[18]  Tucker, C.J.; Pinzon, J.E.; Brown, M.E. Global Inventory Modeling and Mapping Studies. NA94apr15b.n11-VIg, 2.0, Global Land Cover Facility (04/15/1994);; University of Maryland: College Park, MD, USA, 2004.
[19]  Holben, B.N. Characteristics of maximum value composite images from temporal AVHRR dada. Int. J. Remote Sens 1986, 7, 1417–1434.
[20]  Ma, M.G.; Dong, L.X.; Wang, X.M. Study on the dynamically monitoring and simulating the vegetation cover in Northwest China in the past 21 years. J. Glaciol. Geocryol 2003, 25, 232–236.
[21]  Song, Y.; Ma, M.G. Study on the vegetation cover change in Northwest China based on SPOT VEGETATION data. J. Desert Res 2007, 27, 89–93.
[22]  Yan, F.L.; Li, Z.; Shao, Y.; Lu, H.F.; Fan, X.T.; Ren, X. Monitoring of changes in land vegetation covers using NOAA / AVHRR NDVI datasets. J. Lanzhou Univ. (Nat. Sci.) 2003, 39, 90–94.
[23]  Zhang, G.L.; Ouyang, H.; Zhang, X.Z.; Zhou, C.P.; Xu, X.L. Vegetation change and its responses to climatic variation based on eco-geographical regions of Tibetan Plateau. Geogr. Res 2010, 29, 2010–2016.
[24]  Wang, B.L.; French, H.M. Climate controls and high-altitude permafrost, Qinghai-Xizang (Tibet) Plateau, China. Permafrost Periglac 1994, 5, 87–100.
[25]  Zhao, L.; Ping, C.L.; Yang, D.Q.; Cheng, G.D.; Ding, Y.L.; Liu, S.Y. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China. Glob. Planet. Change 2004, 43, 19–31.
[26]  Tett, S.F.B.; Stott, P.A.; Allen, M.R. Causes of twentieth-century temperature change near the earth’s surface. Nature 1999, 399, 569–572.
[27]  Zhang, J.H.; Yao, F.M.; Zheng, L.Y.; Yang, L.M. Evaluation of grassland dynamics in the Northern-Tibet Plateau of China using remote sensing and climate data. Sensors 2007, 7, 3312–3328.
[28]  Yang, Y.H.; Piao, S.L. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau. J. Plant Ecol 2006, 30, 1–8.
[29]  Xu, X.K.; Chen, H.; Klevy, J. Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change. Chin. Sci. Bull 2008, 53, 915–922.
[30]  Li, L.; Yang, S.; Wang, Z.Y.; Zhu, X.D.; Tang, H.Y. Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res 2010, 42, 449–457.
[31]  Peng, J.F.; Gou, X.H.; Chen, F.H.; Fang, K.Y. Climate–growth relationships of Qilian juniper Sabina przewalskii in the Anyemaqen mountains, Tibet. Clim. Res 2010, 41, 31–40.
[32]  Ding, M.J.; Zhang, Y.L.; Liu, L.S.; Zhang, W.; Wang, Z.F.; Bai, W.Q. The relationship between NDVI and precipitation on the Tibetan Plateau. J. Geogr. Sci 2007, 17, 259–268.
[33]  Zheng, D. The system of physico-geographical regions of the Qinghai-Xizang (Tibet) Plateau. Sci. China D 1996, 39, 410–417.
[34]  Dai, S.P.; Zhang, B.; Wang, Q.; Ma, Z.H.; Zou, Y.; Zhang, Y.N. Variation in grassland vegetation NDVI and its ten-day response to temperature and precipitation in the Qilian Mountains. Resour. Sci 2010, 32, 1769–1776.
[35]  Chen, Q.; Zhou, Q.; Zhang, H.F.; Liu, F.G. Spatial disparity of NDVI response in vegetation growing season to climate change in the Three-River Headwaters region. Ecol. Environ. Sci 2010, 19, 1284–1289.
[36]  Zhu, Y.; Peng, G.X.; Wang, Z.; Wang, J.S.; Li, D. The trend of NDVI during the past 30 years in Linzhi Area, Tibet Autonomous Region. J. Northwest For. Univ 2011, 26, 69–74.
[37]  Potter, C.S.; Brooks, V. Global analysis of empirical relations between annual climate and seasonality of NDVI. Int. J. Remote Sens 1998, 19, 2921–2948.
[38]  Yu, S.M.; Liu, J.S.; Yuan, J.G. Vegetation change of Yamzho Yumco Basin in Southern Tibet based on SPOT-VGT NDVI. Spectrosc. Spect. Anal 2010, 30, 1570–1574.
[39]  Hu, Z.M.; Yu, G.R.; Fan, J.W.; Zhong, H.P.; Wang, S.Q.; Li, S.G. Precipitation-use efficiency along a 4,500-km grassland transect. Global Ecol. Biogeogr 2010, 19, 842–851.
[40]  Huxman, T.E.; Smith, M.D.; Fay, P.A.; Knapp, A.K.; Shaw, M.R.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Zak, J.C.; Weltzin, J.F.; et al. Convergence across biomes to a common rain-use efficiency. Nature 2004, 429, 651–654.
[41]  O’Connor, T.G.; Haines, L.M.; Snyman, H.A. Influence of precipitation and species composition on phytomass of a semi-arid African grassland. J. Ecol 2001, 89, 850–860.
[42]  Epstein, H.E.; Lauenroth, W.K.; Burke, I.C. Effect of temperature and soil texture on ANPP in the US Great Plains. Ecology 1997, 78, 2628–2631.
[43]  Xu, B.C.; Gichuki, P.; Shan, L.; Li, F.M. Aboveground biomass production and soil water dynamics of fourleguminous forages in semiarid region, Northwest China. S. Afr. J. Bot 2006, 72, 507–516.
[44]  Bai, Y.F.; Li, L.H.; Wang, Q.B.; Zhang, L.X.; Zhang, Y.; Chen, Z.Z. Changes in plant species diversity and productivity along gradients of precipitation in the Xilin river basin, Inner Mongolia. Acta Phytoecologica Sin 2000, 24, 667–673.
[45]  Yang, Y.H.; Fang, J.Y.; Pan, Y.D. Aboveground biomass in Tibetan grasslands. J. Arid Environ 2009, 73, 91–95.
[46]  Mao, F.; Lu, Z.G.; Zhang, J.H.; Hou, Y.Y. Relations between AVHRR NDVI and climate factors in Northern Tibet in recent 10 years. Acta Ecol. Sin 2007, 27, 3198–3205.
[47]  Cui, L.L.; Shi, J. Temporal and spatial response of vegetation NDVI to temperature and precipitation in eastern China. J. Geogr. Sci 2010, 20, 163–176.
[48]  Zhang, W.J.; Gao, Z.Q. Spatial variation of water/ thermal elements and NDVI with altitudes in central and eastern Tibetan Plateau. Geogr. Res 2006, 25, 878–886.
[49]  Sun, J.; Cheng, G.W.; Li, W.P. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences 2013, 10, 1707–1715.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133