全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impacts of Spatial Variability on Aboveground Biomass Estimation from L-Band Radar in a Temperate Forest

DOI: 10.3390/rs5031001

Keywords: radar, UAVSAR, biomass, forest structure, Maine, Howland

Full-Text   Cite this paper   Add to My Lib

Abstract:

Estimation of forest aboveground biomass (AGB) has become one of the main challenges of remote sensing science for global observation of carbon storage and changes in the past few decades. We examine the impact of plot size at different spatial resolutions, incidence angles, and polarizations on the forest biomass estimation using L-band polarimetric Synthetic Aperture Radar data acquired by NASA’s Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne system. Field inventory data from 32 1.0 ha plots (AGB < 200 Mg ha ?1) in approximately even-aged forests in a temperate to boreal transitional region in the state of Maine were divided into subplots at four different spatial scales (0.0625 ha, 0.25?ha, 0.5 ha, and 1.0 ha) to quantify aboveground biomass variations. The results showed a large variability in aboveground biomass at smaller plot size (0.0625?ha). The variability decreased substantially at larger plot sizes (>0.5 ha), suggesting a stability of field-estimated biomass at scales of about 1.0 ha. UAVSAR backscatter was linked to the field estimates of aboveground biomass to develop parametric equations based on polarized returns to accurately map biomass over the entire radar image. Radar backscatter values at all three polarizations (HH, VV, HV) were positively correlated with field aboveground biomass at all four spatial scales, with the highest correlation at the 1.0 ha scale. Among polarizations, the cross-polarized HV had the highest sensitivity to field estimated aboveground biomass (R 2 = 0.68). Algorithms were developed that combined three radar backscatter polarizations (HH, HV, and VV) to estimate aboveground biomass at the four spatial scales. The predicted aboveground biomass from these algorithms resulted in decreasing estimation error as the pixel size increased, with the best results at the 1 ha scale with an R 2 of 0.67 (p < 0.0001), and an overall RMSE of 44 Mg·ha ?1. For AGB < 150 Mg·ha ?1, the error reduced to 23 Mg·ha ?1 (±15%), suggesting an improved AGB prediction below the L-band sensitivity range to biomass. Results also showed larger bias in aboveground biomass estimation from radar at smaller scales that improved at larger spatial scales of 1.0 ha with underestimation of ?3.62?Mg·ha ?1 over the entire biomass range.

References

[1]  Asner, G.P.; Hughes, R.F.; Mascaro, J.; Uowolo, A.L.; Knapp, D.E.; Jacobson, J.; Kennedy-Bowdoin, T.; Clark, J.K. High-resolution carbon mapping on the million-hectare island of Hawaii. Front. Ecol. Environ 2011, 9, 434–439.
[2]  Le Toan, T.; Quegan, S.; Woodward, I.; Lomas, M.; Delbart, N.; Picard, G. Relating radar remote sensing of biomass to modelling of forest carbon budgets. Climatic Change 2004, 67, 379–402.
[3]  Saatchi, S.; Marlier, M.; Chazdon, R.L.; Clark, D.B.; Russell, A.E. Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sens. Environ 2011, 115, 2836–2849.
[4]  Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 2003, 55, 2836–2849.
[5]  Kasischke, E.S.; Bourgeauchavez, L.L.; French, N.H.F. Observations of variations in ers-1 sar image intensity associated with forest-fires in alaska. IEEE Trans. Geosci. Remote Sens 1994, 32, 206–210.
[6]  Sandberg, G.; Ulander, L.M.H.; Fransson, J.E.S.; Holmgren, J.; Le Toan, T. L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest. Remote Sens. Environ 2011, 115, 2874–2886.
[7]  Wigneron, J.-P.; Calvet, J.-C.; Guyon, D.; Courrier, G.; Grojean, O. Estimation of Coniferous Forest Characteristics from Passive Microwave Measurements. Proceedings of International Geoscience and Remote Sensing Symposium, Florence, Italy, 10–14 July 1995; 1, pp. 725–727.
[8]  Kurvonen, L.; Pulliainen, J.; Hallikainen, M. Active and passive microwave remote sensing of boreal forests. Acta Astronaut 2002, 51, 707–713.
[9]  Pulliainen, J.T.; Kurvonen, L.; Hallikainen, M.T. Multitemporal behavior of l- and c-band sar observations of boreal forests. IEEE Trans. Geosci. Remote Sens 1999, 37, 927–937.
[10]  Ahmed, R.; Siqueira, P.; Bergen, K.; Chapman, B.; Hensley, S. A Biomass Estimate over the Harvard Forest Using Field Measurements with Radar and Lidar Data. Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010.
[11]  Hensley, S.; Chapman, B.; Neumann, M.; Lavalle, M.; Michel, T.; Oveisgharan, S.; Muellerschoen, R.; Siqueira, P.; Ahmed, R. Polarimetric Interferometric Studies of the Harvard Forest Using L-Band UAVSAR Data Repeat Pass Data. Proceedings of 2011 3rd International Asia-Pacific Conference Synthetic Aperture Radar (APSAR), Seoul, Korea, 26–30 September 2011; pp. 1–2.
[12]  Ranson, K.J.; Sun, G.Q. Mapping biomass of a northern forest using multifrequency sar data. IEEE Trans. Geosci. Remote Sens 1994, 32, 388–396.
[13]  Ranson, K.J.; Sun, G.; Weishampel, J.F.; Knox, R.G. Forest biomass from combined ecosystem and radar backscatter modeling. Remote Sens. Environ 1997, 59, 118–133.
[14]  Simard, M.; Hensley, S.; Lavalle, M.; Dubayah, R.; Pinto, N.; Hofton, M. An empirical assessment of temporal decorrelation using the uninhabited aerial vehicle synthetic aperture radar over forested landscapes. Remote Sens 2012, 4, 975–986.
[15]  Frelich, L. Forest Dynamics and Disturbance Regimes: Studies from Temperate Evergreen-Deciduous Forests; Cambridge University Press: Cambridge, UK, 2002.
[16]  Saatchi, S.; Halligan, K.; Despain, D.G.; Crabtree, R.L. Estimation of forest fuel load from radar remote sensing. IEEE Trans. Geosci. Remote Sens 2007, 45, 1726–1740.
[17]  Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer; Food and Agriculture Organization of the United Nations: Rome, Italy, 1997.
[18]  Elias, M.; Potvin, C. Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Can. J. Forest Res 2003, 33, 1039–1045.
[19]  Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Folster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99.
[20]  Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett 2007, 2, 045023.
[21]  Zhang, N.; Yu, Z.L.; Yu, G.R.; Wu, J.G. Scaling up ecosystem productivity from patch to landscape: A case study of changbai mountain nature reserve, china. Landsc. Ecol 2007, 22, 303–315.
[22]  Sun, G.; Ranson, K.J. Forest Biomass Retrieval from Lidar and Radar. Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12–17 July 2009.
[23]  Harrell, P.A.; Kasischke, E.S.; BourgeauChavez, L.L.; Haney, E.M.; Christensen, N.L. Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data. Remote Sens. Environ 1997, 59, 223–233.
[24]  Luckman, A.; Baker, J.; Kuplich, T.M.; Yanasse, C.D.F.; Frery, A.C. A study of the relationship between radar backscatter and regenerating tropical forest biomass for spaceborne SAR instruments. Remote Sens. Environ 1997, 60, 1–13.
[25]  Kasischke, E.S.; Tanase, M.A.; Bourgeau-Chavez, L.L.; Borr, M. Soil moisture limitations on monitoring boreal forest regrowth using spaceborne L-band SAR data. Remote Sens. Environ 2011, 115, 227–232.
[26]  Imhoff, M.L. A theoretical-analysis of the effect of forest structure on synthetic-aperture radar backscatter and the remote-sensing of biomass. IEEE Trans. Geosci. Remote Sens 1995, 33, 341–352.
[27]  Richards, J.A.; Sun, G.Q.; Simonett, D.S. L-band radar backscatter modeling of forest stands. IEEE Trans. Geosci. Remote Sens 1987, 25, 487–498.
[28]  Quegan, S.; Le Toan, T.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens 2000, 38, 741–753.
[29]  Dobson, M.C.; Ulaby, F.T.; Letoan, T.; Beaudoin, A.; Kasischke, E.S.; Christensen, N. Dependence of radar backscatter on coniferous forest biomass. IEEE Trans. Geosci. Remote Sens 1992, 30, 412–415.
[30]  Forest Ecosystem Research at Howland, Maine, Available online: http://howlandforest.org (accessed on 22 August 2009).
[31]  Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for united states tree species. For. Sci 2003, 49, 12–35.
[32]  Heath, L.; Hansen, M.; Smith, J.; Smith, B.; Miles, P. Investigation into Calculating Tree Biomass and Carbon in the FIADB Using a Biomass Expansion Factor Approach. Presented at the Forest Inventory and Analysis Symposium, Park City, UT, USA, 21–23 October 2008.
[33]  NASA’s Jet Propulsion Laboratory. Uninhabited Aerial Vehicle Synthetic Aperture Radar. Available online: http://uavsar.jpl.nasa.gov (accessed on 1 March 2011).
[34]  Saatchi, S.; Moghaddam, M. Estimation of Boreal Forest Biomass Using Spaceborne SAR Systems. Proceedings of IEEE 1999 International Geoscience and Remote Sensing Symposium (IGARSS ’99), Hamburg, Germany, 28 June 1999–2 July 1999.
[35]  Saatchi, S.S.; McDonald, K.C. Coherent effects in microwave backscattering models for forest canopies. IEEE Trans. Geosci. Remote Sens 1997, 35, 1032–1044.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133