全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mapping Land Subsidence Related to Underground Coal Fires in the Wuda Coalfield (Northern China) Using a Small Stack of ALOS PALSAR Differential Interferograms

DOI: 10.3390/rs5031152

Keywords: coal fires, land subsidence, ALOS PALSAR, DInSAR, Wuda coalfield

Full-Text   Cite this paper   Add to My Lib

Abstract:

Coal fires have been found to be a serious problem worldwide in coal mining reserves. Coal fires burn valuable coal reserves and lead to severe environmental degradation of the region. Moreover, coal fires can result in massive surface displacements due to the reduction in volume of the burning coal and can cause thermal effects in the adjacent rock mass particularly cracks and fissures. The Wuda coalfield in Northern China is known for being an exclusive storehouse of prime coking coal as well as for being the site of occurrence of the maximum number of known coal fires among all the coalfields in China and worldwide, and is chosen as our study area. In this study, we have investigated the capabilities and limitations of ALOS PALSAR data for monitoring the land subsidence that accompanies coal fires by means of satellite differential interferometric synthetic aperture radar (DInSAR) observations. An approach to map the large and highly non-linear subsidence based on a small number of SAR images was applied to the Wuda coalfield to reveal the spatial and temporal signals of land subsidence in areas affected by coal fires. The DInSAR results agree well with coal fire data obtained from field investigations and thermal anomaly information, which demonstrates that the capability of ALOS PALSAR data and the proposed approach have remarkable potential to detect this land subsidence of interest. In addition, our results also provide a spatial extent and temporal evolution of the land subsidence behavior accompanying the coal fires, which indicated that several coal fire zones suffer accelerated ongoing land subsidence, whilst other coal fire zones are newly subsiding areas arising from coal fires in the period of development.

References

[1]  Xiong, S.; Chen, B.; Yu, C.; Dang, F.; Zhang, J.; Li, J. The Key Technology Research of Remote Sensing and Geophysical Detection of Underground Coal Spontaneous Combusion (in Chinese), 1st ed ed.; Geological Press: Beijing, China, 2006.
[2]  Tan, H.; Wang, Z.; Ji, J. A Preliminary study of the remote sensing technology system for the thermal field modeling of underground coal fire (in Chinese). Remote Sens. Land Res 2002, 3, 54–57.
[3]  Zhang, J.; Guan, H.; Rosema, A. The application of remote sensing four-layer detection technology to coal fire areas (in Chinese). Remote Sens. Land Resour 2004, 4, 50–53.
[4]  Kuenzer, C.; Zhang, J.; Tetzlaff, A.; van Dijk, P.; Voigt, S.; Mehl, H.; Wagner, W. Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in North-Central China. Appl. Geogr 2007, 27, 42–62.
[5]  Wang, W.; Yu, C.; Fang, Y.; Wan, J.; Xiao, G.; Wu, C. Geophysical characteristics and underground coal fire distribution in Wuda area, Innermongolia (in Chinese). Geophys. Geochem. Explor 2007, 31, 551–555.
[6]  Zhuang, W.; Chen, Y.; Cai, H.; Xu, J. Extracting thermal anomalies of underground coal fire from multi-temporal daytime images, Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 3732–3735.
[7]  Chatterjee, R. Coal Fire mapping from satellite thermal IR data-A case example Injharia Coalfield, Jharkhand, India. ISPRS J. Photogramm 2006, 60, 113–128.
[8]  Prasun, G.; Kuntala, D.; Kanika, S. Application of remote sensing to identify coalfires in the Raniganj Coalbelt, India. Int. J. Appl. Earth Obs. Geoinf 2006, 8, 188–195.
[9]  Kumar, V.; Venkataramana, G.; H?gda, K. Glacier surface velocity estimation using SAR interferometry technique applying ascending and descending passes in Himalayas. Int. J. Appl. Earth Obs. Geoinf 2011, 13, 545–551.
[10]  Lanari, R.; Lundgren, P.; Sansosti, E. Dynamic deformation of Etna volcano observed by satellite radar interferometry. Geophys. Res. Lett 1998, 25, 1541–1544.
[11]  Zebker, H.A.; Rosen, P.A.; Goldstein, R.M.; Gabriel, A.K.; Werner, C.L. On the derivation of coseismic displacement-fields using differential radar interferometry—The landers earthquake. J. Geophys. Res 1994, 99, 19617–19634.
[12]  Zhang, K.; Ng, A.H.-M.; Ge, L.; Dong, Y.; Rizos, C. Multi-path PALSAR interferometric observations of the 2008 magnitude 8.0 Wenchuan earthquake. Int. J. Remote Sens 2010, 31, 3449–3463.
[13]  Meisina, C.; Zucca, F.; Fossati, D.; Ceriani, M.; Allievi, J. Ground deformation monitoring by using the permanent scatterers technique: The example of the Oltrepo Pavese (Lombardia, Italy). Eng. Geol 2006, 88, 240–259.
[14]  Metternicht, G.; Hurni, L.; Gogu, R. Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens. Environ 2005, 98, 284–303.
[15]  Chen, F.; Lin, H.; Yeung, K.; Cheng, S. Detection of slope instability in Hong Kong based on multi-baseline differential SAR interferometry using ALOS PALSAR data. GISci. Remote Sens 2010, 47, 208–220.
[16]  Bawden, G.W.; Thatcher, W.; Stein, R.S.; Hudnut, K.W.; Peltzer, G. Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 2001, 412, 812–815.
[17]  Hoffmann, J. The future of satellite remote sensing in hydrogeology. Hydrogeol. J 2005, 13, 247–250.
[18]  Ge, L.; Chang, H.C.; Rizos, C. Mine subsidence monitoring using multi-source satellite SAR images. Photogramm. Eng. Remote Sensing 2007, 73, 259–266.
[19]  Ng, A.H.; Chang, H.C.; Ge, L.; Rizos, C.; Omura, M. Assessment of radar interferometry performance for ground subsidence monitoring due to underground mining. Earth Planets Space 2009, 61, 733–745.
[20]  Ng, A.H.; Ge, L.; Yan, Y.; Li, X.; Chang, H.C.; Zhang, K.; Rizos, C. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia. Eng. Geol 2010, 115, 1–15.
[21]  Voigt, S.; Tetzlaff, A.; Zhang, J.; Künzer, C.; Zhukov, B.; Strunz, G.; Oertel, D.; Roth, A.; van Dirk, P.; Mehl, H. Integrating satellite remote sensing techniques for detection and analysis of uncontrolled coal seam fires in North China. Int. J. Coal Geol 2004, 59, 121–136.
[22]  Hoffmann, J.; Roth, A.; Voigt, S. Detecting Coal Fires in China Using Differential Interferometric Synthetic Aperture Radar (InSAR). Proceedings of the FRINGE 2003 Workshop (ESA SP-550), Frascati, Italy, 1–5 December 2003; p. 501.
[23]  Prakash, A.; Fielding, E.J.; Gens, R.; van Genderen, J.L.; Evans, D.L. Data fusion for investigating land subsidence and coal fire hazards in a coal mining area. Int. J. Remote Sens 2001, 22, 921–932.
[24]  Jiang, L.; Lin, H.; Ma, J.; Kong, B. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study. Remote Sens. Environ 2011, 115, 257–268.
[25]  Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens 2007, 45, 3307–3316.
[26]  Huang, Z.; Zhang, D.; Wang, F.; Dang, F.; Li, Z. Differential SAR interferometry for the monitoring of underground coal spontaneous combustion zone surface deformation (in Chinese). Remote Sens. Land Resour 2010, 4, 85–90.
[27]  Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens 2000, 38, 2202–2212.
[28]  Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens 2001, 39, 8–20.
[29]  Kuenzer, C.; Zhang, J.; Tetzlaff, A.; van Dijk, P.; Voigt, S.; Mehl, H.; Wagner, W. Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China. Appl. Geogr 2007, 27, 42–62.
[30]  Zhang, X. Coal Fires in Northwest China-Detection, Monitoring, and Prediction Using Remote Sensing DataPh.D. Thesis, International Institute for Aerial Survey and Earth Sciences, International Institute for Aerial Survey and Earth Sciences (ITC), Enschede, Netherlands. 1998.
[31]  Hanssen, R.F. Radar Interferometry Data Interpretation and Error Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; p. 328.
[32]  Hooper, A.J. Persistent Scatterer Radar Interferometry for Crustal Deformation Studies and Modelling of Volcanic DeformationPh.D. Thesis, Department of Geophysics, Stanford University: Stanford, CA, USA. 2006.
[33]  Kampes, B.M. Displacement Parameter Estimation Using Permanent Scatterer InterferometryPh.D. Thesis, Delft University of Technology: Delft, The Netherlands. 2005.
[34]  Zhang, D.; Yu, L. A High-precision co-registration method for InSAR image processing (in Chinese). J. Remote Sens 2007, 11, 563–567.
[35]  Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett 1998, 25, 4035–4038.
[36]  Beradino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens 2002, 40, 2375–2383.
[37]  Costantini, M.; Rosen, P. A generalized phase unwrapping approach for sparse data. Proceedings of IGARSS’99, Hamburg, Germany, 28 June–2 July, 1999; pp. 267–269.
[38]  Kampes, B.M. Radar Interferometry: Persistent Scatterer Technique, 1st ed ed.; Springer: Dordrecht, The Netherlands, 2006.
[39]  Wadge, G.; Webley, P.W.; James, I.N.; Bingley, R.; Dodson, A.; Waugh, S.; Veneboer, T.; Puglisi, G.; Mattia, M.; Baker, D.; et al. Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna. Geophys. Res. Lett 2002, 29, 1905.
[40]  Delacourt, C.; Briole, P.; Achache, J. Tropospheric corrections of SAR interferograms with strong topography. Application to Etna. Geophys. Res. Lett 1998, 25, 2849–2852.
[41]  Francois, B.; Pierre, B. Volcano-wide fringes in ERS synthetic aperture radar interferograms of Etna (1992–1998): Deformation or tropospheric effect. J. Geophys. Res 2000, 1056, 16391–16402.
[42]  Chaabane, F.; Avallone, A.; Tupin, F.; Briole, P.; Maitre, H. A Multitemporal method for correction of tropospheric effects in differential SAR interferometry: Application to the Gulf of Corinth earthquake. IEEE Trans. Geosci. Remote Sens 2007, 45, 1605–1615.
[43]  Cavalié, O.; Doin, M.P.; Lasserre, C.; Briole, P. Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure. J. Geophys. Res 2007, 112, B03403–B03420.
[44]  Ge, D.; Wang, Y.; Guo, X.; Fan, J.; Liu, S. Surface deformation field monitoring by use of small-baseline differential interferograms stack (in Chinese). J. Geod. Geodyn 2008, 28, 61–66.
[45]  Mansor, S.B.; Cracknell, A.P.; Shilin, B.V.; Gornyi, V.I. Monitoring of underground coal fires using thermal infrared data. Int. J. Remote Sens 1994, 15, 1675–1685.
[46]  Prakash, A.; Saraf, A.K.; Gupta, R.P.; Dutta, M.; Sundaram, R.M. Surface thermal anomalies with underground fires in Jhahra coal mine, India. Int. J. Remote Sens 1995, 16, 2105–2109.
[47]  Sandwell, D.T.; Myer, D.; Mellors, R.; Shimada, M.; Brooks, B.; Foster, J. Accuracy and resolution of ALOS interferometry: Vector deformation maps of the father’s day intrusion at Kilauea. IEEE Trans. Geosci. Remote Sens 2008, 46, 3524–3534.
[48]  Strozzi, T.; Wegmuller, U.; Werner, C.L.; Wiesmann, A.; Spreckels, V. JERS SAR interferometry for land subsidence monitoring. IEEE Trans. Geosci. Remote Sens 2003, 41, 1702–1708.
[49]  Chen, F.; Lin, H.; Li, Z.; Zhou, J.; Chen, Q. Interaction between permafrost and infrastructure along the Qinghai-Tibet Railway detected via jointly analysis of C- and L-band small baseline SAR interferometry. Remote Sens. Environ 2012, 123, 532–540.
[50]  Samsonov, S. Topographic correction for ALOS PALSAR interferometry. IEEE Trans. Geosci. Remote Sens 2010, 48, 3020–3027.
[51]  Raucoules, D.; Bourgine, B.; Michele, M.; Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M.; et al. Validation and intercomparison of persistent scatterers interferometry: PSIC4 project results. J. Appl. Geophys 2009, 68, 335–347.
[52]  Colesanti, C.; Locatelli, R.; Novali, F. Ground Deformation Monitoring Exploiting SAR Permanent Scatterers. Proceedings of IEEE International Geoscience and Remote Sensing Symposium 2002 (IGARSS’02), Toronto, ON, Canada, 24–28 June 2002; 1, pp. 203–207.
[53]  Crosetto, M.; Monserrat, O.; Iglesias, R.; Crippa, B. Persistent scatterer interferometry: Potential, limits and initial C- and X-band comparison. Photogramm. Eng. Remote Sensing 2010, 76, 1061–1069.
[54]  Colesanti, C.; Ferretti, A.; Novali, F.; Prati, C.; Rocca, F. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans. Geosci. Remote Sens 2003, 41, 1685–1701.
[55]  Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. J. Geophys. Res 2007, 112, B07407.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133