Detecting land use or land cover changes is a challenging problem in analyzing images. Change-detection plays a fundamental role in most of land use or cover monitoring systems using remote-sensing techniques. The reliability of individual automatic change-detection algorithms is currently below operating requirements when considering the intrinsic uncertainty of a change-detection algorithm and the complexity of detecting changes in remote-sensing images. In particular, most of these algorithms are only suited for a specific image data source, study area and research purpose. Only a number of comprehensive change-detection methods that consider the reliability of the algorithm in different implementation situations have been reported. This study attempts to explore the advantages of combining several typical change-detection algorithms. This combination is specifically designed for a highly reliable change-detection task. Specifically, a fusion approach based on reliability is proposed for an exclusive land use or land cover change-detection. First, the reliability of each candidate algorithm is evaluated. Then, a fuzzy comprehensive evaluation is used to generate a reliable change-detection approach. This evaluation is a transformation between a one-way evaluation matrix and a weight vector computed using the reliability of each candidate algorithm. Experimental results reveal that the advantages of combining these distinct change-detection techniques are evident.
References
[1]
Chen, J.; Gong, P.; He, C.; Pu, R.; Shi, P. Land use/land cover change-detection using improved change-vector analysis. Photogramm. Eng. Remote Sensing 2003, 69, 369–380.
[2]
Menz, G. A Review of Techniques and Challenges in Change-detection. Proceedings of Change-Detection Symposium, Hong Kong, 15–16 December 2011.
[3]
Malila, W.A. Change Vector Analysis: An Approach for Detecting Forest Changes with Landsat. Proceedings of the Sixth Internationl Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 3–6 June 1980; pp. 326–335.
[4]
Johnson, R.D.; Kasischke, E. Change vector analysis: A technique for the multispectral monitoring of land cover and condition. Int. J. Remote Sens 1998, 19, 411–426.
[5]
Silva, P.; Santos, J.; Shimabukuro, Y.; Souza, P.; Graca, P. Change Vector Analysis Technique to Monitor Selective Logging Activities in Amazon. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS’03), Toulouse, France, 21–25 July 2003; 4, pp. 2580–2582.
[6]
Siwe, R.N.; Koch, B. Change vector analysis to categorise land cover change processes using the tasselled cap as biophysical indicator: Description: Implementing Landsat TM and ETM to detect land cover and land use changes in the mount Cameroon region using the CVA technique with the tasselled cap as biophysical indicator. Environ. Monit. Assess 2008, 145, 227–235.
[7]
He, C.; Wei, A.; Shi, P.; Zhang, Q.; Zhao, Y. Detecting land use/land cover change in rural-urban fringe areas using extended change-vector analysis. Int. J. Appl. Earth Obs 2011, 13, 572–585.
[8]
Khalyani, A.H.; Falkowski, M.J.; Mayer, A.L. Classification of Landsat images based on spectral and topographic variables for land cover change-detection in Zagros forests. Int. J. Remote Sens 2012, 33, 6956–6974.
[9]
Yang, Y.; Zhou, Q.; Gong, J.; Wang, Y. An integrated spatio-temporal classification method for urban fringe change-detection analysis. Int. J. Remote Sens 2012, 33, 2516–2531.
[10]
Zhou, H.; Jiang, H.; Zhou, G.; Song, X.; Yu, S.; Chang, J.; Liu, S.; Jiang, Z.; Jiang, B. Monitoring the change of urban wetland using high spatial resolution remote sensing data. Int. J. Remote Sens 2010, 31, 1717–1731.
[11]
Li, X.; Yeh, A. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int. J. Remote Sens 1998, 19, 1501–1518.
[12]
Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land cover change-detection using multi-temporal MODIS NDVI data. Remote Sens. Environ 2006, 105, 142–154.
[13]
Nielsen, A.A. Kernel maximum autocorrelation factor and minimum noise fraction transformations. IEEE Trans. Image Process 2011, 20, 612–624.
[14]
Nielsen, A.A.; Conradsen, K.; Simpson, J.J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change-detection studies. Remote Sens. Environ 1998, 64, 1–19.
[15]
Nori, W.; El Nour Elsiddig, I.N. Detection of land cover changes using multi-temporal satellite imagery. Int. Arch. Photogram. Remote Sens. Spat. Inform. Sci 2008, 37, 947–951.
[16]
Dennison, P.E.; Roberts, D.A.; Peterson, S.H. Spectral shape-based temporal compositing algorithms for MODIS surface reflectance data. Remote Sens. Environ 2007, 109, 510–522.
[17]
Panigrahy, R.K.; Kale, M.P.; Dutta, U.; Mishra, A.; Banerjee, B.; Singh, S. Forest cover change-detection of Western Ghats of Maharashtra using satellite remote sensing based visual interpretation technique. Curr. Sci 2010, 98, 657–664.
[18]
?iriny?ld?za, T. Change-Detection Analysis by Using IKONOS Imagery. Proceeding of XXth ISPRS Congress—Geo-Imagery Bridging Continents, Istanbul, Turkish, 12–23 July 2004; pp. 12–23.
[19]
Matikainen, L.; Hyyppa, J.; Ahokas, E.; Markelin, L.; Kaartinen, H. Automatic detection of buildings and changes in buildings for updating of maps. Remote Sens 2010, 2, 1217–1248.
[20]
Sinha, P.; Kumar, L. Binary images in seasonal land cover change identification: a comparative study in parts of New South Wales, Australia. Int. J. Remote Sens 2013, 34, 2162–2186.
[21]
Celik, T.; Ma, K.K. Unsupervised change-detection for satellite images using dual-tree complex wavelet transform. IEEE Trans. Geosci. Remote Sens 2010, 48, 1199–1210.
[22]
Pieter Kempeneers, F.S.; Strobl, Peter; McInerney, Daniel O.; San-Miguel-Ayanz, Jesús. increasing robustness of post classification change-detection using time series of land cover maps. IEEE Trans. Geosci. Remote Sens 2012, 50, 13.
[23]
Bovolo, F.; Bruzzone, L. A theoretical framework for unsupervised change-detection based on change vector analysis in the polar domain. IEEE Trans. Geosci. Remote Sens 2007, 45, 218–236.
[24]
Schenk, T.; Csatho, B. A new methodology for detecting ice sheet surface elevation changes from laser altimetry data. IEEE Trans. Geosci. Remote Sens 2012, 50, 3302–3316.
[25]
Frolking, S.; Hagen, S.; Milliman, T.; Palace, M.; Shimbo, J.Z.; Fahnestock, M. Detection of large-scale forest canopy change in pan-tropical humid forests 2000–2009 with the seawinds KU-band scatterometer. IEEE Trans. Geosci. Remote Sens 2012, 50, 2603–2617.
[26]
Barnard, R.W.A. Reliability Engineering: Futility and Error. Proceedings of International Council on Systems Engineering (INCOSE)-Second Annual Chapter Conference, Cape Town, South Africa, 31 August–1 September 2004; pp. 1–7.
[27]
Mil-Hdbk-338B, Electronic Design Reliability Handbook; Barringer and Associates, Inc.: Humble, TX, USA, 1998.
[28]
Almutairi, A.; Warner, T.A. Change-detection accuracy and image properties: A study using simulated data. Remote Sens 2010, 2, 1508–1529.
[29]
Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ 2002, 80, 185–201.
[30]
Haley, S.M.; Osberg, J.S. Kappa coefficient calculation using multiple ratings per subject: a special communication. Physical Therapy 1989, 69, 970–974.
[31]
Corresponding, P.C.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review ArticleDigital change-detection methods in ecosystem monitoring: A review. Int. J. Remote Sens 2004, 25, 1565–1596.
[32]
Deng, J.; Wang, K.; Deng, Y.; Qi, G. PCA—Based land use change-detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens 2008, 29, 4823–4838.
[33]
Mas, J.F. Monitoring land cover changes: A comparison of change-detection techniques. Int. J. Remote Sens 1999, 20, 139–152.
[34]
Srivastava, P.K.; Han, D.; Ramirez, M.R.; Bray, M.; Islam, T. Selection of classification techniques for land use/land cover change investigation. Adv. Space Res 2012, 50, 1250–1265.