全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of the Spatial Domain Size on the Performance of the Ts-VI Triangle Method in Terrestrial Evapotranspiration?Estimation

DOI: 10.3390/rs5041998

Keywords: triangle method, evapotranspiration estimation, spatial domain size, limiting boundaries of Ts-VI space

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aims to investigate the impact of the spatial size of the study domain on the performance of the triangle method using progressively smaller domains and Moderate Resolution Imaging Spectroradiometer (MODIS) observations in the Heihe River basin located in the arid region of northwestern China. Data from 10 clear-sky days during the growing season from April to September 2009 were used. Results show that different dry/wet edges in the surface temperature-vegetation index space directly led to the deviation of evapotranspiration (ET) estimates due to the variation of the spatial domain size. The slope and the intercept of the limiting edges are dependent on the range and the maximum of surface temperature over the spatial domain. The difference of the limiting edges between different domain sizes has little impact on the spatial pattern of ET estimates, with the Pearson correlation coefficient ranging from 0.94 to 1.0 for the 10 pairs of ET estimates at different domain scales. However, it has a larger impact on the degree of discrepancies in ET estimates between different domain sizes, with the maximum of 66 W?m ?2. The largest deviation of ET estimates between different domain sizes was found at the beginning of the growing season.

References

[1]  Norman, J.M.; Kustas, W.P.; Humes, K.S. A two-source approach for estimating soil and vegetation energy fluxes from observation of directional radiometric surface temperature. Agric. For. Meteorol 1995, 77, 263–293.
[2]  Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. J. Hydrol 1998, 213, 198–212.
[3]  Kustas, W.P.; Norman, J.M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric. For. Meteorol 1999, 94, 13–29.
[4]  Jiang, L.; Islam, S. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour. Res 2001, 37, 329–340.
[5]  Su, Z.B. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci 2002, 6, 85–89.
[6]  Zhang, R.H.; Sun, X.M.; Wang, W.M.; Xu, J.P.; Zhu, Z.L.; Tian, J. An operational two-layer remote sensing model to estimate surface flux in regional scale: Physical background. Sci. China Ser. D 2005, 48, 225–244.
[7]  Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-model. J. Irrig. Drain Eng 2007, 133, 380–394.
[8]  Jiang, L.; Islam, S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophys. Res. Lett 1999, 26, 2773–2776.
[9]  Venturini, V.; Bisht, G.; Islam, S.; Jiang, L. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida. Remote Sens. Environ 2004, 93, 77–86.
[10]  Yang, Y.M.; Su, H.B.; Zhang, R.H.; Tian, J.; Yang, S.Q. Estimation of regional evapotranspiration based on remote sensing: Case study in the Heihe River Basin. J. Appl. Remote Sens. 2012, 6, doi:10.1117/1.JRS.6.061701.
[11]  Stisen, S.; Sandholt, I.; N?rgaard, A.; Fensholt, R.; Jensen, K.H. Combining the triangle method with thermal inertia to estimate regional evapotranspiration—Applied to MSG/SEVIRI data in the Senegal River basin. Remote Sens. Environ 2008, 112, 1242–1255.
[12]  Tang, R.L.; Li, Z.L.; Tang, B.H. An application of the T(s)-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ 2010, 114, 540–551.
[13]  Choi, M.; Kustas, W.P.; Anderson, M.C.; Allen, R.G.; Li, F.Q.; Kjaersgaard, J.H. An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, US) during SMACEX. Agric. For. Meteorol 2009, 149, 2082–2097.
[14]  Tang, R.L.; Li, Z.L.; Jia, Y.Y.; Li, C.R.; Sun, X.M.; Kustas, W.P.; Anderson, M.C. An intercomparison of three remote sensing-based energy balance models using Large Aperture Scintillometer measurements over a wheat-corn production region. Remote Sens. Environ 2011, 115, 3187–3202.
[15]  Su, H.B.; Tian, J.; Chen, S.H.; Zhang, R.H.; Rong, Y.; Yang, Y.M.; Tang, X.Z.; Garcia, J. A New Algorithm to Automatically Determine the Boundary of the Scatter Plot in the Triangle Method for Evapotranspiration Retrieval. Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011.
[16]  Merlin, O.; Duchemin, B.; Hagolle, O; Jacob, F; Coudert, B.; Chehbouni, A.; Dedieu, G.; Garatuza, J.; Kerr, Y. Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2 images. Remote Sens. Environ 2010, 114, 2500–2512.
[17]  Merlin, O.; Rudiger, C.; Al Bitar, A.; Richaume, P.H.; Walker, J.P.; Kerr, Y.H. Disaggregation of SMOS soil moisture in southeastern Australia. IEEE Trans. Geosci. Remote Sens 2012, 50, 1556–1571.
[18]  Carlson, T. An Overview of the “Triangle Method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629.
[19]  Zhang, R.H.; Tian, J.; Su, H.B.; Sun, X.M.; Chen, S.H.; Xia, J. Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval. Sensors 2008, 8, 6165–6187.
[20]  Chen, X.Y.; Yamaguchi, J.; Chen, Y.S. Scale effect of vegetation-index-based spatial sharpening for thermal imagery: A simulation study by ASTER data. IEEE Geosci. Remote Sens. Lett 2012, 9, 549–553.
[21]  Long, D.; Singh, V.P.; Li, Z.L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? J. Geophys. Res. 2011, 116, doi:10.1029/2011JD016542.
[22]  Long, D.; Singh, V.P.; Scanlon, B.R. Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation. J. Geophys. Res. 2012, 117, doi:10.1029/2011JD017079.
[23]  Idso, S.B.; Jackson, R.D. Thermal radiation from the atmosphere. J. Geophys. Res 1969, 74, 5397–5403.
[24]  Zhang, R.H. Experimental Remote Sensing Modeling and Surface Foundation (in Chinese); Beijing Science Press: Beijing, China, 1996; pp. 105–106.
[25]  Zhang, Y.C.; Yu., J.J.; Wang, P.; Fu, G.B. Vegetation response to integrated water management in the Ejina Basin, Northwest China. Hydrol. Process 2011, 25, 3448–3461.
[26]  Derber, J.C.; Parish, D.F.; Lord, S.J. The new global operational analysis system at the National Meteorological Center. Weather Forecast 1991, 6, 538–547.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133