全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Insects  2013 

Persistence of the Gypsy Moth Pheromone, Disparlure, in the Environment in Various Climates

DOI: 10.3390/insects4010104

Keywords: Lymantria dispar, pheromone, mating disruption, environmental persistence

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mating disruption techniques are used in pest control for many species of insects, yet little is known regarding the environmental persistence of these pheromones following their application and if persistence is affected by climatic conditions. We first studied the persistent effect of ground applications of Luretape? GM in Lymantria dispar (L) mating disruption in VA, USA in 2006. The removal of Luretape? GM indicated that the strong persistent effect of disparlure in the environment reported by previous studies is produced by residual pheromone in the dispensers as opposed to environmental contamination. In 2010 and 2011, we evaluated the efficacy of two formulations, Disrupt??II and SPLAT GM TM, in VA and WI, USA, which presented different climatic conditions. In plots treated in WI and VA, male moth catches in pheromone-baited traps were reduced in the year of treatment and one year after the pheromone applications relative to untreated controls. However, similar first- and second-year effects of pheromone treatments in VA and WI suggest that the release rate over one and two years was the same across markedly different climates. Future applications that use liquid or biodegradable formulations of synthetic pheromones could reduce the amount of persistence in the environment.

References

[1]  Carde, R.T.; Minks, A.K. Control of moth pests by mating disruption: successes and constraints. Annu. Rev. Entomol. 1995, 40, 559–585.
[2]  El-Sayed, A.M.; Suckling, D.M.; Wearing, C.H.; Byers, J.A. Potential of mass trapping for long-term pest management and eradication of invasive species. J. Econ. Entomol. 2006, 99, 1550–1564.
[3]  Suckling, D.M.; Tobin, P.C.; McCullough, D.G.; Herms, D.A. Combining tactics to exploit Allee effects for eradication of alien insect populations. J. Econ. Entomol. 2012, 105, 1–13.
[4]  El-Sayed, A.M.; Mitchell, V.J.; Manning, L.-A.M.; Suckling, D.M. New sex pheromone blend for the lightbrown apple moth, Epiphyas postvittana. J. Chem. Ecol. 2011, 37, 640–646, doi:10.1007/s10886-011-9964-x.
[5]  Miller, J.R.; Gut, L.J.; de Lame, F.M.; Stelinski, L.L. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 2): Case studies. J. Chem. Ecol. 2006, 32, 2115–2143, doi:10.1007/s10886-006-9136-6.
[6]  Yamanaka, T. Mating disruption or mass trapping? Numerical simulation analysis of a control strategy for lepidopteran pests. Popul. Ecol. 2007, 49, 75–86.
[7]  Onufrieva, K.S.; Brewster, C.C.; Thorpe, K.W.; Sharov, A.A.; Leonard, D.S.; Reardon, R.C.; Mastro, V.C.; Sellers, P.; Roberts, E.A. Effects of the 3M (TM) MEC sprayable pheromone (R) formulation on gypsy moth mating success. J. Appl. Entomol. 2008, 132, 461–468.
[8]  Wins-Purdy, A.H.; Judd, G.J.R.; Evenden, M.L. Mechanisms of pheromone communication disruption in choristoneura rosaceana exposed to microencapsulated (Z)-11-tetradecenyl acetate formulated with and without horticultural oil. J. Chem. Ecol. 2008, 34, 1096–1106.
[9]  Thorpe, K.; Reardon, R.; Tcheslavskaia, K.; Leonard, D.; Mastro, V. A review of the use of mating disruption to manage gypsy moth, Lymantria dispar (L.); FHTET-2006–13. U.S. Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team: Washington, DC, USA, 2006. Technical Report.
[10]  Karg, G.; Suckling, D.M.; Bradley, S.J. Absorption and release of pheromone of Epiphyas postvittana (Lepidoptera: Tortricidae) by apple leaves. J. Chem. Ecol. 1994, 20, 1825–1841, doi:10.1007/BF02066225.
[11]  Suckling, D.M.; Karg, G.; Bradley, S.J. Apple foliage enhances mating disruption of light-brown apple moth. J. Chem. Ecol. 1996, 22, 325–341.
[12]  Thorpe, K.W.; Tcheslavskaia, K.S.; Tobin, P.C.; Blackbum, L.M.; Leonard, D.S.; Roberts, E.A. Persistent effects of aerial applications of disparlure on gypsy moth: Trap catch and mating success. Entomol. Exp. Appl. 2007, 125, 223–229.
[13]  Gut, L.J.; Stelinski, L.L.; Thomson, D.R.; Miller, J.R. Behaviour-modifying Chemicals: Prospects and Constraints in IPM; CABI Publishing: Wallingford, UK, 2004; pp. 73–121.
[14]  Wall, C.; Sturgeon, D.M.; Greenway, A.R.; Perry, J.N. Contamination of vegetation with synthetic sex-attractant released from traps for the pea moth, Cydia nigricana. Entomol. Exp. Appl. 1981, 30, 111–115.
[15]  Leonhardt, B.A.; Mastro, V.C.; Leonard, D.S.; McLane, W.; Reardon, R.C.; Thorpe, K.W. Control of low-density gypsy moth (Lepidoptera:Lymantriidae) populations by mating disruption with pheromone. J. Cheml. Ecol. 1996, 22, 1255–1272.
[16]  Tobin, P.C.; Blackburn, L.M. Slow the Spread: A National Program to Manage the Gypsy Moth; USDA Forest Service: Newtown Square, PA, USA, 2007. Technical Report .
[17]  Sharov, A.A.; Leonard, D.; Liebhold, A.M.; Roberts, E.A.; Dickerson, W. Slow the Spread": A national program to contain the gypsy moth. J. Forest. 2002, 100, 30–35.
[18]  Tobin, P.C.; Bai, B.B.; Eggen, D.A.; Leonard, D.S. The ecology, geopolitics, and economics of managing the gypsy moth, Lymantria dispar (L.), in the United States. Int. J. Pest Manage. 2012, 58, 195–210, doi:10.1080/09670874.2011.647836.
[19]  Johnson, D.M.; Liebhold, A.M.; Bjornstad, O.N.; McManus, M.L. Circumpolar variation in periodicity and synchrony among gypsy moth populations. J. Anim. Ecol. 2005, 74, 882–892.
[20]  Haynes, K.J.; Liebhold, A.M.; Johnson, D.M. Spatial analysis of harmonic oscillation of gypsy moth outbreak intensity. Oecologia 2009, 159, 249–256.
[21]  Elkinton, J.S.; Liebhold, A.M. Population-Dynamics of Gypsy-Moth in North-America. Ann. Rev. Entomol. 1990, 35, 571–596.
[22]  Epanchin-Niell, R.S.; Haight, R.G.; Berec, L.; Kean, J.M.; Liebhold, A.M. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 2012, 15, 803–812.
[23]  Liebhold, A.M.; Tobin, P.C. Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Popul. Ecol. 2006, 48, 253–262.
[24]  Nation, J.L.; Foltz, J.L.; Dixon, W.N.; McAuslane, H.J. Evaluation of loss of (+)-disparlure from gypsy moth (Lepidoptera: Lymantriidae) pheromone dispenser tapes under field conditions in Florida. Fla. Entomol. 1993, 76, 584–589.
[25]  Leonhardt, B.A.; Mastro, V.C.; Devilbiss, E.D. Evaluation of pheromone dispensers for use in gypsy moth detection (Lepidoptera: Lymantriidae). J. Entomol. Sci. 1992, 27, 280–284.
[26]  Leonhardt, B.A.; Mastro, V.C.; Paszek, E.C.; Schwalbe, C.P.; Devilbiss, A.D. Dependence of gypsy moth (Lepidoptera: Lymantriidae) capture on pheromone release rate from laminate and other dispensers. J. Econ. Entomol. 1990, 83, 1977–1981.
[27]  Bierl-Leonhardt, B.A.; DeVilbiss, E.D.; Plimmer, J.R. Rate of release of disparlure from laminated plastic dispensers. J. Econ. Entomol. 1979, 72, 319–321.
[28]  Leonhardt, B.A.; Moreno, D.S. Evaluation of controlled release laminate dispensers for pheromones of several insect species. In Insect Pheromone Technology: Chemistry and Applications; Leonhardt, B.A., Beroza, M., Eds.; American Chemical Society: Washington, DC, USA, 1982; pp. 159–173. American Chemical Society Symposium Series 190.
[29]  Tobin, P.C.; Zhang, A.; Onufrieva, K.; Leonard, D.S. Field evaluation of effect of temperature on release of disparlure from a pheromone-baited trapping system used to monitor gypsy moth (Lepidoptera: Lymantriidae). J. Econ. Entomol. 2011, 104, 1265–1271.
[30]  Kolodny-Hirsch, D.M.; Webb, R.E.; Olsen, R.; Venables, L. Mating disruption of gypsy moth (Lepidoptera: Lymantriidae) following repeated ground application of racemic disparlure. J. Econ. Entomol. 1990, 83, 1972–1976.
[31]  Thorpe, K.W.; Hickman, A.D.; Tcheslavskaia, K.S.; Leonard, D.S.; Roberts, E.A. Comparison of methods for deploying female gypsy moths to evaluate mating disruption treatments. Agr. Forest. Entomol. 2007, 9, 31–37.
[32]  Tcheslavskaia, K.; Brewster, C.C.; Sharov, A.A. Mating success of gypsy moth (Lepidoptera : Lymantriidae) females in Southern Wisconsin. Great Lakes Entomol. 2002, 35, 1–7.
[33]  Elkinton, J.S.; Carde, R.T. Effects of Intertrap Distance and Wind Direction on the Interaction of Gypsy-Moth (Lepidoptera, Lymantriidae) Pheromone-Baited Traps. Environ. Entomol. 1988, 17, 764–769.
[34]  Thorpe, K.W.; Mastro, V.C.; Leonard, D.S.; Leonhardt, B.A.; McLane, W.; Reardon, R.C.; Talley, S.E. Comparative efficacy of two controlled-release gypsy moth mating disruption formulations. Entomol. Exp. App. 1999, 90, 267–277.
[35]  Onufrieva, K.S.; Thorpe, K.W.; Hickman, A.D.; Tobin, P.C.; Leonard, D.S.; Roberts, E.A. Effects of SPLAT? GM sprayable pheromone formulation on gypsy moth mating success. Entomol. Exp. App. 2010, 136, 109–115.
[36]  Karg, G.; Sauer, A.E.; Koch, U.T. The Influence of Plants on the Development of Pheromone Atmospheres Measured by EAG Method. In Proceedings of 18th Gottingen Neurobiology Conference, Thieme Verlag, Stuttgart, Germany, 4–6 June 1990.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133