全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Insects  2013 

The Effects of Pesticides on Queen Rearing and Virus Titers in Honey Bees (Apis mellifera L.)

DOI: 10.3390/insects4010071

Keywords: deformed wing virus, Black queen cell virus, chlorpyrifos, boscalid, pyraclostrobin

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effects of sublethal pesticide exposure on queen emergence and virus titers were examined. Queen rearing colonies were fed pollen with chlorpyrifos (CPF) alone (pollen-1) and with CPF and the fungicide Pristine ? (pollen-2). Fewer queens emerged when larvae from open foraging ( i.e., outside) colonies were reared in colonies fed pollen-1 or 2 compared with when those larvae were reared in outside colonies. Larvae grafted from and reared in colonies fed pollen-2 had lower rates of queen emergence than pollen-1 or outside colonies. Deformed wing virus (DWV) and black queen cell virus were found in nurse bees from colonies fed pollen-1 or 2 and in outside colonies. The viruses also were detected in queen larvae. However, we did not detect virus in emerged queens grafted from and reared in outside colonies. In contrast, DWV was found in all emerged queens grafted from colonies fed pollen-1 or 2 either reared in outside hives or those fed pollen-1 or 2. The results suggest that sublethal exposure of CPF alone but especially when Pristine ? is added reduces queen emergence possibly due to compromised immunity in developing queens.

References

[1]  Johnson, R.M.; Ellis, M.D.; Mullin, C.A. Frazier, Pesticides and honey bee toxicity—USA. Apidologie 2010, 41, 312–331, doi:10.1051/apido/2010018.
[2]  NAS (National Academy of Sciences) Status of Pollinators in North America; National Academy Press: Washington, DC, USA, 2007.
[3]  Claudianos, C.; Ranson, H.; Johnson, R.M.; Biswas, S.; Schuler, M.A.; Berenbaum, M.R.; Feyereisen, R.; Oakeshott, J.G. A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 2006, 15, 615–636, doi:10.1111/j.1365-2583.2006.00672.x.
[4]  Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006, 443, 931–949, doi:10.1038/nature05260.
[5]  James, R.R.; Xu, J. Mechanisms by which pesticides affect insect immunity. J. Invertebr. Pathol. 2012, 109, 175–182, doi:10.1016/j.jip.2011.12.005.
[6]  Alaux, C.; Brunet, J.-L.; Dussaubat, C.; Mondet, F.; Tchamitchan, S.; Cousin, M.; Brillard, J.; Baldy, A.; Belzunces, L.P.; LeConte, Y. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 2010, 12, 774–782, doi:10.1111/j.1462-2920.2009.02123.x.
[7]  Vidau, C.; Diogon, M.; Aufauvre, J.; Fontbonne, R.; Vigues, B.; Brunet, J.-L.; Texier, C.; Biron, D.; Blot, N.; Alaoui, E.; et al. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 2011, 6, e21550.
[8]  Pettis, J.S.; van Engelsdorp, D.; Johnson, J.; Dively, G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 2012, 99, 153–158, doi:10.1007/s00114-011-0881-1.
[9]  Wu, J.Y.; Smart, M.D.; Anelli, C.M.; Sheppard, W.S. Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J. Invertebr. Pathol. 2012, 109, 326–329, doi:10.1016/j.jip.2012.01.005.
[10]  Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; vanEngelsdorp, D.; Pettis, J.S. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS One 2010, 5, e9754.
[11]  Pope, C.N. Organophosphorus Pesticides: They all have the same mechanism of toxicity? J. Toxicol. Environ. Health Part B Crit. Rev. 1999, 2, 161–181, doi:10.1080/109374099281205.
[12]  Duysen, E.G.; Li, B.; Xie, W.; Schopfer, L.M.; Anderson, R.S.; Broomfield, C.A.; Lockridge, O. Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: Supersensitivity of acetylcholinesterase knockout mouse to VX lethality. J. Pharmacol. Exp. Ther. 2001, 299, 528–535.
[13]  Adigun, A.A.; Seidler, F.J.; Slotkin, T.A. Disparate developmental neurotoxicants converge on the cyclic AMP signaling cascade revealed by transcriptional profiles in vitro and in vivo. Brain Res. 2010, 1316, 1–16, doi:10.1016/j.brainres.2009.12.025.
[14]  Li, Q. New mechanism of organophosphorous pesticide-induced immunotoxicity. J. Nippon Med. Sch. 2007, 74, 92–105, doi:10.1272/jnms.74.92.
[15]  Yang, C.; Hamel, C.; Vujanovic, V.; Gan, Y. Fungicide: Modes of action and possible impact on nontarget microorganisms. ISRN Ecol. 2011, doi:10.5402/2011/130289.
[16]  Ziogas, B.N.; Georgopoulos, S.G. The effect of carboxin and of thenoyltrifluoroacetone on cyanide-sensitive and cyanide-resistant respiration of Ustilago maydis mitochondria. Pestic. Biochem. Physiol. 1979, 11, 208–217, doi:10.1016/0048-3575(79)90060-9.
[17]  Motoba, K.; Uchida, M.; Tada, E. Mode of antifungal action and selectivity of flutolanil. Agric. Biol. Chem. 1988, 52, 1445–1449, doi:10.1271/bbb1961.52.1445.
[18]  Matsson, M.; Hederstedt, L. The carboxin-binding site on Paracoccus denitrificans succinate: Quinone reductase identified by mutations. J. Bioenerg. Biomembr. 2001, 33, 99–105, doi:10.1023/A:1010744330092.
[19]  Spiegel, J.; Stammler, G. Baseline sensitivity of Monilinia laxa and M. fructigena to pyraclostrobin and boscalid. J. Plant Dis. Prot. 2006, 113, 199–206.
[20]  Arnoult, D.; Carneiro, L.; Tattoli, I.; Girardin, S.E. The role of mitochondria in cellular defense against microbial infection. Semin. Immunol. 2009, 21, 223–232, doi:10.1016/j.smim.2009.05.009.
[21]  Laidlaw, H.H. Contemporary Queen Rearing; Dadant & Sons: Hamilton, IL, USA, 1979.
[22]  Sagili, R.R.; Pankiw, T. Effects of protein-constrained brood food on honey bee (Apis mellifera L.) pollen foraging and colony growth. Behav. Ecol. Sociobiol. 2007, 61, 1471–1478, doi:10.1007/s00265-007-0379-1.
[23]  Sagili, R.R.; Pankiw, T.; Zhu-Salzman, K. Effects of soybean trypsin inhibitor on hypopharyngeal gland protein content, total midgut protease activity and survival of the honey bee (Apis mellifera L.). J. Insect Physiol. 2005, 51, 953–957, doi:10.1016/j.jinsphys.2005.04.003.
[24]  Chen, Y.P.; Higgins, J.A.; Feldlaufer, M.F. Quantitative analysis of deformed wing virus infection in the honey bee, Apis mellifera L. by real-time RT-PCR. Appl. Environ.Microbiol. 2004, 71, 436–441.
[25]  DeGrandi-Hoffman, G.; Chen, Y.; Huang, E.; Huang, M.H. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 2010, 56, 1184–1191, doi:10.1016/j.jinsphys.2010.03.017.
[26]  Gauthier, L.; Ravallec, M.; Tournaire, M.; Cousserans, F.; Bergoin, M.; Dainat, B.; deMiranda, J.R. Viruses associated with ovarian degeneration in Apis mellifera L. queens. PLoS One 2011, 6, e16217.
[27]  Chen, Y.P.; Pettis, J.S.; Feldlaufer, M.F. Detection of multiple viruses in queens of the honey bee, Apis mellifera L. J. Invert. Pathol. 2005, 90, 118–121, doi:10.1016/j.jip.2005.08.005.
[28]  De Miranda, J.R.; Fries, I. Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J. Invertebr. Pathol. 2008, 98, 184–189, doi:10.1016/j.jip.2008.02.004.
[29]  Yue, C.; Schroder, M.; Bienefeld, K.; Genersch, E. Detection of viral sequences in semen of honeybees (Apis mellifera): Evidence for vertical transmission of viruses through drones. J. Invertebr. Pathol. 2006, 92, 105–108, doi:10.1016/j.jip.2006.03.001.
[30]  Iqbal, J.; Mueller, U. Virus infection causes specific learning deficits in honeybee foragers. Proc. Roy. Soc. Lond. B. Biol. Sci. 2007, 274, 1517–1521, doi:10.1098/rspb.2007.0022.
[31]  De Miranda, J.R.; Genersch, E. Deformed wing virus. J. Invertebr. Pathol. 2010, 103, 48–61, doi:10.1016/j.jip.2009.06.012.
[32]  High?eld, A.C.; El Nagar, A.; Mackinder, L.C.M.; No?l, L.M.L.J.; Hall, M.J.; Martin, S.J.; Schroeder, D.C. Deformed wing virus implicated in overwintering honeybee colony losses. Appl. Environ. Microbiol. 2009, 75, 7212–7220, doi:10.1128/AEM.02227-09.
[33]  Berthoud, H.; Imdorf, A.; Haueter, M.; Radloff, S.; Neumann, P. Virus infections and winter losses of honey bee colonies (Apis mellifera). J. Apic. Res. 2010, 49, 60–65, doi:10.3896/IBRA.1.49.1.08.
[34]  Genersch, E.; von der Ohe, W.; Kaatz, H.; Schroeder, A.; Otten, C.; Büchler, R.; Berg, S.; Ritter, W.; Mühlen, W.; Gisder, S.; et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010, 41, 332–352, doi:10.1051/apido/2010014.
[35]  DiPrisco, G.; Zhang, X.; Pennacchio, F.; Caprio, E.; Li, J.; Evans, J.; DeGrandi-Hoffman, G.; Hamilton, M.; Chen, Y. Viral dynamics of persistent and acute virus infections in honey bee. Viruses 2011, 3, 2425–2441, doi:10.3390/v3122425.
[36]  Locke, B.; Forsgren, E.; Fries, I.; deMiranda, J.R. Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl. Environ. Microbiol. 2012, 78, 227–235, doi:10.1128/AEM.06094-11.
[37]  Blacquiere, T.; Smagghe, G.; van Gestal, C.A.M.; Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 2012, 21, 973–992, doi:10.1007/s10646-012-0863-x.
[38]  Boncristiani, H.; Underwood, R.; Schwarz, R.; Evans, J.D.; Pettis, J.; vanEngelsdorp, D. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J. Insect Physiol. 2012, 58, 613–620, doi:10.1016/j.jinsphys.2011.12.011.
[39]  Pettis, J.S.; Collins, A.M.; Wilbanks, R.; Feldlaufer, M.F. Effects of coumaphos on queen rearing in the honey bee, Apis mellifera. Apidologie 2004, 35, 605–610, doi:10.1051/apido:2004056.
[40]  Engel, P.; Martinson, V.G.; Moran, N.A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. USA 2012, 109, 11002–11007, doi:10.1073/pnas.1202970109.
[41]  Anderson, K.E.; Sheehan, T.H.; Eckholm, B.J.; Mott, B.M.; DeGrandi-Hoffman, G. An emerging paradigm of colony health: Microbial balance of the honey bee and hive (Apis mellifera). Insect. Soc. 2011, 58, 431–444, doi:10.1007/s00040-011-0194-6.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133