RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.
References
[1]
Perrimon, N.; Ni, J.Q.; Perkins, L. In vivo RNAi: today and tomorrow. Cold Spring Harb. Perspect. Biol. 2010, 2, a003640, doi:10.1101/cshperspect.a003640.
[2]
Page, R.E., Jr; Gadau, J.; Beye, M. The emergence of hymenopteran genetics. Genetics 2002, 160, 375–379.
[3]
Beye, M.; H?rtel, S.; Hagen, A.; Hasselmann, M.; Omholt, S.W. Specific developmental gene silencing in the honey bee using a homeobox motif. Insect Mol. Biol. 2002, 11, 527–532, doi:10.1046/j.1365-2583.2002.00361.x.
[4]
Amdam, G.V.; Sim?es, Z.L.; Guidugli, K.R.; Norberg, K.; Omholt, S.W. Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol. 2003, 3, 1, doi:10.1186/1472-6750-3-1.
Kulkarni, M.M.; Booker, M.; Silver, S.J.; Friedman, A.; Hong, P.; Perrimon, N.; Mathey-Prevot, B. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat. Methods 2006, 3, 833–838.
[9]
Schüssler, M.D.; Alexandersson, E.; Bienert, G.P.; Kichey, T.; Laursen, K.H.; Johanson, U.; Kjellbom, P.; Schjoerring, J.K.; Jahn, T.P. The effects of the loss of TIP1;1 and TIP1;2 aquaporins in Arabidopsis thaliana. Plant. J. 2008, 56, 756–767, doi:10.1111/j.1365-313X.2008.03632.x.
[10]
Jarosch, A.; Moritz, R.F. RNA interference in honeybees: Off-target effects caused by dsRNA. Apidologie 2012, 43, 128–138, doi:10.1007/s13592-011-0092-y.
[11]
Wang, S.; Chen, A.J.; Shi, L.J.; Zhao, X.F.; Wang, J.X. TRBP and eIF6 homologue in Marsupenaeus. japonicus play crucial roles in antiviral response. PLoS One 2012, 7, e30057.
[12]
Liu, H.; Jiravanichpaisal, P.; S?derh?ll, I.; Cerenius, L.; S?derh?ll, K. Antilipopolysaccharide factor interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish Pacifastacus. leniusculus. J. Virol. 2006, 80, 10365–10371, doi:10.1128/JVI.01101-06.
[13]
Yao, Q.; Zhang, D.; Tang, B.; Chen, J.; Chen, J.; Lu, L.; Zhang, W. Identification of 20-hydroxyecdysone late-response genes in the chitin biosynthesis pathway. PLoS One 2010, 5, e14058.
[14]
Tang, B.; Wang, S.; Zhang, F. Two storage hexamerins from the beet armyworm Spodoptera. exigua: Cloning, characterization and the effect of gene silencing on survival. BMC Mol. Biol. 2010, 11, 65, doi:10.1186/1471-2199-11-65.
[15]
Mutti, N.S.; Park, Y.; Reese, J.C.; Reeck, G.R. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon. pisum. J. Insect Sci. 2006, 6, 1–7.
[16]
Sim, S.; Ramirez, J.L.; Dimopoulos, G. Dengue virus infection of the Aedes. aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog. 2012, 8, e1002631, doi:10.1371/journal.ppat.1002631.
[17]
Shukla, J.N.; Nagaraju, J. Two female-specific DSX proteins are encoded by the sex-specific transcripts of dsx and are required for female sexual differentiation in two wild silkmoth species, Antheraea. assama and Antheraea. mylitta (Lepidoptera, Saturniidae). Mol. Biol. 2010, 40, 672–682.
[18]
Liu, X.; Zhang, H.; Li, S.; Zhu, K.Y.; Ma, E.; Zhang, J. Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta. migratoria. Insect Biochem. Mol. Biol. 2012, 42, 902–910, doi:10.1016/j.ibmb.2012.09.002.
[19]
Wynant, N.; Verlinden, H.; Breugelmans, B.; Simonet, G.; Vanden Broeck, J. Tissue-dependence and sensitivity of the systemic RNA interference response in the desert locust, Schistocerca. gregaria. Insect Biochem. Mol. Biol. 2012, 42, 911–917, doi:10.1016/j.ibmb.2012.09.004.
[20]
Wuriyanghan, H.; Rosa, C.; Falk, B.W. Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericerca. cockerelli. PLoS One 2011, 6, e27736, doi:10.1371/journal.pone.0027736.
[21]
Nelson, C.M.; Ihle, K.E.; Fondrk, M.K.; Page, R.E.; Amdam, G.V. The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. 2007, 5, e62, doi:10.1371/journal.pbio.0050062.
[22]
Maori, E.; Paldi, N.; Shafir, S.; Kalev, H.; Tsur, E.; Glick, E.; Sela, I. IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Mol. Biol. 2009, 18, 55–60, doi:10.1111/j.1365-2583.2009.00847.x.
[23]
Nunes, F.M.F.; Sim?es, Z.L.P. A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions. Insect Biochem. Mol. Biol. 2009, 39, 157–160, doi:10.1016/j.ibmb.2008.10.011.
[24]
Jarosch, A.; Moritz, R.F. Systemic RNA-interference in the honeybee Apis mellifera: Tissue dependent uptake of fluorescent siRNA after intra-abdominal application observed by laser-scanning microscopy. J. Insect Physiol. 2011, 57, 851–857, doi:10.1016/j.jinsphys.2011.03.013.
[25]
Kamakura, M. Royalactin induces queen differentiation in honeybees. Nature 2011, 473, 478–483, doi:10.1038/nature10093.
[26]
Mutti, N.S.; Wang, Y.; Kaftanoglu, O.; Amdam, G.V. Honey bee PTEN--description, developmental knockdown and tissue-specific expression of splice-variants correlated with alternative social phenotypes. PLoS One 2011, 6, e22195.
[27]
Desai, S.D.; Eu, Y.J.; Whyard, S.; Currie, R.W. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Mol. Biol. 2012, 21, 446–455.
[28]
Elbashir, S.M.; Lendeckel, W.; Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001, 15, 188–200, doi:10.1101/gad.862301.
[29]
Lin, X.; Ruan, X.; Anderson, M.G.; McDowell, J.A.; Kroeger, P.E.; Fesik, S.W.; Shen, Y. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 2005, 33, 4527–4535.
[30]
Jackson, A.L.; Burchard, J.; Schelter, J.; Chau, B.N.; Cleary, M.; Lim, L.; Linsley, P.S. Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA 2006, 12, 1179–1187, doi:10.1261/rna.25706.
[31]
Betancur, J.G.; Yoda, M.; Tomari, Y. miRNA-like duplexes as RNAi triggers with improved specificity. Front. Genet. 2012, 3, 127.
[32]
Jackson, A.L.; Burchard, J.; Schelter, J.; Chau, BN.; Cleary, M.; Lim, L.; Linsley, P.S. Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA 2006, 12, 1179–1187, doi:10.1261/rna.25706.
[33]
Schultz, N.; Marenstein, D.R.; De Angelis, D.A.; Wang, W.Q.; Nelander, S.; Jacobsen, A.; Marks, D.S.; Massagué, J.; Sander, C. Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR2. Silence 2011, 2, 3, doi:10.1186/1758-907X-2-3.
[34]
Sigoillot, F.D.; King, R.W. Vigilance and validation: keys to success in RNAi screening. ACS Chem. Biol. 2011, 6, 47–60, doi:10.1021/cb100358f.
[35]
Khan, A.A.; Betel, D.; Miller, M.L.; Sander, C.; Leslie, C.S.; Marks, D.S. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat. Biotechnol. 2009, 27, 549–555.
[36]
Persengiev, S.P.; Zhu, X.; Green, M.R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004, 10, 12–18, doi:10.1261/rna5160904.
[37]
Corona, M.; Robinson, G.E. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol. 2006, 15, 687–701, doi:10.1111/j.1365-2583.2006.00695.x.
[38]
Boutros, M.; Agaisse, H.; Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell. 2002, 3, 711–722, doi:10.1016/S1534-5807(02)00325-8.
[39]
Broderick, S.; Wang, X.; Simms, N.; Page-McCaw, A. Drosophila Ninjurin A induces nonapoptotic cell death. PLoS One 2012, 7, e44567.
[40]
Casteels, P.; Ampe, C.; Jacobs, F.; Vaeck, M.; Tempst, P. Apidaecins: Antibacterial peptides from honeybees. EMBO J. 1989, 8, 2387–2391.
[41]
Wu, Q.; Luo, Y.; Lu, R.; Lau, N.; Lai, E.C.; Li, W.X.; Ding, S.W. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc. Natl. Acad. Sci. USA 2010, 107, 1606–1611.
[42]
Zambon, R.A.; Vakharia, V.N.; Wu, L.P. RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell Microbiol. 2006, 8, 880–889, doi:10.1111/j.1462-5822.2006.00688.x.
[43]
Randolt, K.; Gimple, O.; Geissend?rfer, J.; Reinders, J.; Prusko, C.; Mueller, M.J.; Albert, S.; Tautz, J.; Beier, H. Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Arch. Insect Biochem. Physiol. 2008, 69, 155–167, doi:10.1002/arch.20269.
[44]
Fujiyuki, T.; Matsuzaka, E.; Nakaoka, T.; Takeuchi, H.; Wakamoto, A.; Ohka, S.; Sekimizu, K.; Nomoto, A.; Kubo, T. Distribution of Kakugo virus and its effects on the gene expression profile in the brain of the worker honeybee Apis mellifera L. J. Virol. 2009, 83, 11560–11568.
[45]
G?tschenberger, H.; Azzami, K.; Gimple, O.; Grimmer, G.; Sumner, S.; Fujiyuki, T.; Tautz, J.; Mueller, M.J. Evidence of a novel immune responsive protein in the Hymenoptera. Insect Biochem. Mol. Biol. 2011, 41, 968–981, doi:10.1016/j.ibmb.2011.09.006.
[46]
Terenius, O.; Papanicolaou, A.; Garbutt, J.S.; Eleftherianos, I.; Huvenne, H.; Kanginakudru, S.; Albrechtsen, M.; An, C.; Aymeric, J.L.; Barthel, A.; Bebas, P.; Bitra, K.; Bravo, A.; Chevalier, F.; Collinge, D.P.; Crava, C.M.; de Maagd, R.A.; Duvic, B.; Erlandson, M.; Faye, I.; Felf?ldi, G.; Fujiwara, H.; Futahashi, R.; Gandhe, A.S.; Gatehouse, H.S.; Gatehouse, L.N.; Giebultowicz, J.M.; Gómez, I.; Grimmelikhuijzen, C.J.; Groot, A.T.; Hauser, F.; Heckel, D.G.; Hegedus, D.D.; Hrycaj, S.; Huang, L.; Hull, J.J.; Iatrou, K.; Iga, M.; Kanost, M.R.; Kotwica, J.; Li, C.; Li, J.; Liu, J.; Lundmark, M.; Matsumoto, S.; Meyering-Vos, M.; Millichap, P.J.; Monteiro, A.; Mrinal, N.; Niimi, T.; Nowara, D.; Ohnishi, A.; Oostra, V.; Ozaki, K.; Papakonstantinou, M.; Popadic, A.; Rajam, M.V.; Saenko, S.; Simpson, R.M.; Soberón, M.; Strand, M.R.; Tomita, S.; Toprak, U.; Wang, P.; Wee, C.W.; Whyard, S.; Zhang, W.; Nagaraju, J.; Ffrench-Constant, R.H.; Herrero, S.; Gordon, K.; Swevers, L.; Smagghe, G. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 2011, 57, 231–245.
[47]
Vankoningsloo, S.; de Longueville, F.; Evrard, S.; Rahier, P.; Houbion, A.; Fattaccioli, A.; Gastellier, M.; Remacle, J.; Raes, M.; Renard, P.; Arnould, T. Gene expression silencing with 'specific' small interfering RNA goes beyond specificity - a study of key parameters to take into account in the onset of small interfering RNA off-target effects. FEBS J. 2008, 275, 2738–2753, doi:10.1111/j.1742-4658.2008.06415.x.
[48]
Olejniczak, M.; Galka, P.; Krzyzosiak, W.J. Sequence-non-specific effects of RNA interference triggers and microRNA regulators. Nucleic Acids Res. 2010, 38, 1–16.
[49]
Watson, F.L.; Püttmann-Holgado, R.; Thomas, F.; Lamar, D.L.; Hughes, M.; Kondo, M.; Rebel, V.I.; Schmucker, D. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 2005, 309, 1874–1878, doi:10.1126/science.1116887.
[50]
Evans, J.D.; Aronstein, K.; Chen, Y.P.; Hetru, C.; Imler, J.L.; Jiang, H.; Kanost, M.; Thompson, G.J.; Zou, Z.; Hultmark, D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 2006, 15, 645–656, doi:10.1111/j.1365-2583.2006.00682.x.
[51]
Laufer, H. Blood proteins in insect development. Ann. N. Y. Acad. Sci. 1960, 89, 490–515, doi:10.1111/j.1749-6632.1960.tb27574.x.
[52]
Dimopoulos, G.; Seeley, D.; Wolf, A.; Kafatos, F.C. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. EMBO J. 1998, 17, 6115–6123, doi:10.1093/emboj/17.21.6115.
[53]
Wilson-Rich, N.; Dres, S.T.; Starks, P.T. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). J. Insect Physiol. 2008, 54, 1392–1399, doi:10.1016/j.jinsphys.2008.07.016.
[54]
Louren?o, A.P.; Martins, J.R.; Guidugli-Lazzarini, K.R.; Macedo, L.M.; Bitondi, M.M.G.; Sim?es, Z.L.P. Potential costs of bacterial infection on storage protein gene expression and reproduction in queenless Apis mellifera worker bees on distinct dietary regimes. J. Insect Physiol. 2012, 58, 1217–1225, doi:10.1016/j.jinsphys.2012.06.006.
[55]
Martins, J.R.; Nunes, F.M.F.; Cristino, A.S.; Sim?es, Z.LP.; Bitondi, M.M.G. The four hexamerin genes in the honey bee: structure, molecular evolution and function deduced from expression patterns in queens, workers and drones. BMC Mol. Biol. 2010, 11, 23, doi:10.1186/1471-2199-11-23.
Kocher, S.D.; Richard, F.J.; Tarpy, D.R.; Grozinger, C.M. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genomics 2008, 9, 232, doi:10.1186/1471-2164-9-232.
[58]
Kocher, S.D.; Ayroles, J.; Stone, E.A.; Grozinger, C.M. Individual variation in pheromone response correlates with reproductive traits and brain gene expression in worker honey bees. PLoS One 2010, 5, e9116.
[59]
Barchuk, A.R.; Cristino, A.S.; Kucharski, R.; Costa, L.F.; Sim?es, Z.L.P.; Maleszka, R. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Dev. Biol. 2007, 7, 70, doi:10.1186/1471-213X-7-70.
[60]
Bomtorin, A.D.; Barchuk, A.R.; Moda, L.M.; Sim?es, Z.L.P. Hox gene expression leads to differential hind leg development between honeybee castes. PLoS One 2012, 7, e40111.
[61]
Brazma, A. Minimum Information About a Microarray Experiment (MIAME)--successes, failures, challenges. Sci. World J. 2009, 9, 420–423, doi:10.1100/tsw.2009.57.