Non-modified Multiwalled Carbon Nanotubes (MWCNT) and polypropylene (PP) in absence of compatibilizer have been chosen to elaborate MWCNT/PP nanocomposites using a simple melt-mixing dispersing method. Calorimetry results indicate little effect of MWCNTs on crystallinity of PP, revealing not much interaction between nanotubes and PP chains, which is compatible with the employed manufacturing procedure. In any case, a hindering of polymer chains motion by MWCNTs is observed in the molten state, using oscillatory flow experiments, and a rheological percolation threshold is determined. The percolation limit is not noticed by Pressure-Volume-Temperature (PVT) measurements in the melt, because this technique rather detects local motions. Keeping the nanocomposites in the molten state provokes an electrical conductivity increase of several orders of magnitude, but on ulterior crystallization, the conductivity decreases, probably due to a reduction of the ionic conductivity. For a concentration of 2% MWCNTs, in the limit of percolation, the conductivity decreases considerably more, because percolation network constituted in the molten state is unstable and is destroyed during crystallization.
Grady, B.P. Carbon Nanotube-Polymer Composites: Manufacture, Properties and Applications; Wiley: New York, NY, USA, 2011.
[3]
Bose, S.; Khare, R.A.; Moldenaers, P. Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review. Polymer 2010, 51, 975–993, doi:10.1016/j.polymer.2010.01.044.
[4]
Micusik, M.; Omastova, M.; Pionteck, J.; Pandis, C.; Logakis, E.; Pissis, P. Influence of surface treatment of multiwall carbon nanotubes on the properties of polypropylene/carbon nanotubes nanocomposites. Polym. Adv. Technol. 2011, 22, 38–47, doi:10.1002/pat.1745.
[5]
Lee, S.H.; Kim, M.W.; Kim, S.H.; Youn, J.R. Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips. Eur. Polym. J. 2008, 44, 1620–1630, doi:10.1016/j.eurpolymj.2008.03.017.
Lee, S.H.; Cho, E.; Jeon, S.H.; Youn, J.R. Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon 2007, 45, 2810–2822, doi:10.1016/j.carbon.2007.08.042.
[13]
Ahangari, M.G.; Fereidoon, A.; Saedodin, S. Mechanical and thermal properties of PP/compatibilized PP/Acid treated SWCNTs nanocomposites: Effect of different acid treatment times. E-Polymers 2008, 153, 1–15.
[14]
Wang, Z.; Fan, X.; Wang, K.; Deng, H.; Chen, F.; Fu, Q. Fabrication of polypropylene/carbon nanotubes composites via a sequential process of (Rotating Solid-State Mixing)-Plus-(Melt Extrusion). Compos. Sci. Technol. 2011, 71, 1397–1403, doi:10.1016/j.compscitech.2011.05.012.
[15]
Alig, I.; P?tschke, P.; Lellinger, D.; Skipa, T.; Pegel, S.; Kasaliwal, G.R.; Villmow, T. Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 2012, 53, 4–28, doi:10.1016/j.polymer.2011.10.063.
[16]
Alig, I.; Skipa, T.; Engel, M.; Lellinger, D.; Pegel, S.; P?tschke, P. Electrical conductivity recovery in carbon nanotube-polymer composites after transient shear. Phys. Status Solidi B 2007, 244, 4223–4226, doi:10.1002/pssb.200776138.
[17]
Alig, I.; Skipa, T.; Lellinger, D.; P?tschke, P. Destruction and formation of a carbon nanotube network in polymer melts: Rheology and conductivity spectroscopy. Polymer 2008, 49, 3524–3532, doi:10.1016/j.polymer.2008.05.037.
[18]
Alig, I.; Skipa, T.; Lellinger, D.; Bierdel, M.; Meyer, H. dynamic percolation of carbon nanotube agglomerates in a polymer matrix: Comparison of different model approaches. Phys. Status Solidi B 2008, 245, 2264–2267, doi:10.1002/pssb.200879622.
[19]
Alig, I.; Lellinger, D.; Engel, M.; Skipa, T.; P?tschke, P. Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer 2008, 49, 1902–1909, doi:10.1016/j.polymer.2008.01.073.
[20]
Skipa, T.; Lellinger, D.; Saphiannikova, M.; Alig, I. Shear-stimulated formation of multi-wall carbon nanotube networks in polymer melts. Phys. Status Solidi B 2009, 246, 2453–2456, doi:10.1002/pssb.200982265.
[21]
Skipa, T.; Lellinger, D.; B?hm, W.; Saphiannikova, M.; Alig, I. Influence of shear deformation on carbon nanotube networks in polycarbonate melts: Interplay between build-up and destruction of agglomerates. Polymer 2010, 51, 201–210, doi:10.1016/j.polymer.2009.11.047.
[22]
Lellinger, D.; Skipa, T.; B?hm, W.; Alig, I. Spatial decorrelation of the conductive nanotube network in a polymer melt. Phys. Status Solidi B 2009, 246, 2667–2670, doi:10.1002/pssb.200982303.
Palza, H.; Garzón, C.; Arias, O. Modifying the electrical behaviour of polypropylene/carbon nanotube composites by adding a second nanoparticle and by annealing processes. Express Polym. Lett. 2012, 6, 639–646, doi:10.3144/expresspolymlett.2012.68.
[25]
Alig, I.; P?tschke, P.; Pegel, S.; Dubkin, S.; Lellinger, D. Plastic composites containing carbon nanotubes: Optimisation of processing conditions and properties. Rubber Fiber Plast. 2008, 3, 92–95, doi:10.2174/157489008784705331.
[26]
Alig, I.; Lellinger, D.; Dudkin, S.M.; P?tschke, P. Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites: Recovery after shear and crystallization. Polymer 2007, 48, 1020–1029.
[27]
Xu, D.; Wang, Z. Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix. Polymer 2008, 49, 330–338, doi:10.1016/j.polymer.2007.11.041.
Andrews, R.; Jacques, D.; Minot, M.; Rantell, T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 2002, 287, 395–403, doi:10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S.
[30]
Seo, M.K.; Park, S.J. Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem. Phys. Lett. 2004, 395, 44–48, doi:10.1016/j.cplett.2004.07.047.
[31]
Du, F.; Scogna, R.C.; Zhou, W.; Brand, S.; Fischer, J.E.; Winey, K.I. Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules 2004, 37, 9048–9055, doi:10.1021/ma049164g.
Jana, R.; Im, C.; Bhunia, H. Effect of multiwalled carbon nanotubes on crystallization behavior of poly(epsilon-caprolactone)diol. J. Thermoplast. Compos. Mater. 2009, 22, 531–546, doi:10.1177/0892705709105978.
[36]
Bikiaris, D. Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials 2010, 3, 2884–2946, doi:10.3390/ma3042884.
[37]
Lu, K.; Grossiord, N.; Koning, C.E.; Miltner, H.E.; Mele, B.V.; Loos, J. Carbon nanotube/isotactic polypropylene composites prepared by latex technology: Morphology analysis of cnt-induced nucleation. Macromolecules 2008, 41, 8081–8085, doi:10.1021/ma8008299.
[38]
Bikiaris, D.; Vassiliou, A.; Chrissafis, K.; Paraskevopoulos, K.M.; Jannakoudakis, A.; Docoslis, A. Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym. Degrad. Stab. 2008, 93, 952–967, doi:10.1016/j.polymdegradstab.2008.01.033.
[39]
Manchado, M.A.L.; Valentini, L.; Biagiotti, J.; Kenny, J.M. Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 2005, 43, 1499–1505, doi:10.1016/j.carbon.2005.01.031.
[40]
Zeng, Y.; Liu, P.; Du, J.; Zhao, L.; Ajayan, P.M.; Cheng, H.M. Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube-polymer interactions. Carbon 2010, 48, 3551–3558, doi:10.1016/j.carbon.2010.05.053.
[41]
Wang, Y.; Wu, J.; Wei, F. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon 2003, 41, 2939–2948, doi:10.1016/S0008-6223(03)00390-7.
[42]
Deng, H.; Bilotti, E.; Zhang, R.; Peijs, T. Effective reinforcement of carbon nanotubes in polypropylene matrices. J. Appl. Polym. Sci. 2010, 118, 30–41.
[43]
P?tschke, P.; Dudkin, S.M.; Alig, I. Dielectric spectroscopy on melt processed polycarbonate-multiwalled carbon nanotube composites. Polymer 2003, 44, 5023–5030, doi:10.1016/S0032-3861(03)00451-8.
[44]
P?tschke, P.; Abdel-Goad, M.; Alig, I.; Dudkin, S.; Lellinger, D. Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 2004, 45, 8863–8870, doi:10.1016/j.polymer.2004.10.040.
[45]
Socher, R.; Krause, B.; Müller, M.T.; Boldt, R.; P?tschke, P. The influence of matrix viscosity on mwcnt dispersion and electrical properties in different thermoplastic nanocomposites. Polymer 2012, 53, 495–504, doi:10.1016/j.polymer.2011.12.019.
[46]
Kasaliwal, G.R.; G?ldel, A.; P?tschke, P.; Heinrich, G. Influences of polymer matrix melt viscosity and molecular weight on MWCNT agglomerate dispersion. Polymer 2011, 52, 1027–1036, doi:10.1016/j.polymer.2011.01.007.
[47]
Fernandez, I.; Santamaría, A.; Mu?oz, M.E.; Castell, P. A rheological analysis of interactions in phenoxy/organoclay nanocomposites. Eur. Polym. J. 2007, 43, 3171–3176, doi:10.1016/j.eurpolymj.2007.05.025.
[48]
Noll, A.; Burkhart, T. Morphological characterization and modelling of electrical conductivity of multi-walled carbon nanotube/poly(p-phenylene sulfide) nanocomposites obtained by Twin Screw Extrusion. Compos. Sci. Technol. 2011, 71, 499–505, doi:10.1016/j.compscitech.2010.12.026.
[49]
Stricker, F.; Maier, R.D.; Bruch, M.; Thomann, R.; Mülhaupt, R. Influence of glass bead fillers on phase transitions of syndiotactic polypropene. Polymer 1999, 40, 2077–2084, doi:10.1016/S0032-3861(98)00247-X.
[50]
Zoller, P. A Study of the pressure-volume-temperature relationships of four related amorphous polymers: Polycarbonate, polyarylate, phenoxy, and polysulfone. J. Polym. Sci. B 1982, 20, 1453–1464.
[51]
Zoller, P. Analysis of the equations of state of polyolefin melts in terms of the simha-somcynsky hole theory. J. Polym. Sci. B 1978, 16, 1491–1498.
[52]
Utracki, L.A.; Simha, R. Pressure-volume-temperature dependence of polypropylene/organoclay nanocomposites. Macromolecules 2004, 37, 10123–10133, doi:10.1021/ma048262z.
[53]
Utracki, L.A.; Simha, R.; Garcia-Rejon, A. Pressure-volume-temperature dependence of poly-e-caprolactam/clay nanocomposites. Macromolecules 2003, 36, 2114–2121, doi:10.1021/ma0215464.
[54]
Utracki, L.A. PVT of amorphous and crystalline polymers and their nanocomposites. Polym. Degrad. Stab. 2010, 95, 411–421, doi:10.1016/j.polymdegradstab.2009.07.020.
[55]
Utracki, L.A. Equations of state for polyamide-6 and its nanocomposites. II. Effects of clay. J. Polym. Sci. B 2009, 47, 966–980, doi:10.1002/polb.21702.
[56]
Utracki, L.A. Equations of state for polyamide-6 and its nanocomposites. 1. Fundamentals and the matrix. J. Polym. Sci. B 2009, 47, 299–313, doi:10.1002/polb.21640.
[57]
Utracki, L.A. Free volume of molten and glassy polystyrene and its nanocomposites. J. Polym. Sci. B 2008, 46, 2504–2518, doi:10.1002/polb.21621.
[58]
Utracki, L.A. Compressibility and thermal expansion coefficients of nanocomposites with amorphous and crystalline polymer matrix. Eur. Polym. J. 2009, 45, 1891–1903, doi:10.1016/j.eurpolymj.2009.04.009.
[59]
Fernández, M.; Landa, M.; Mu?oz, M.E.; Santamaría, A. Electrical conductivity of pur/mwcnt nanocomposites in the molten state, during crystallization and in the solid state. Eur. Polym. J. 2011, 47, 2078–2086, doi:10.1016/j.eurpolymj.2011.07.026.
[60]
Pang, H.; Zhang, Y.C.; Chen, T.; Zeng, B.Q.; Li, Z.M. Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite. Appl. Phys. Lett. 2010, 96, 251907–251907-3.
[61]
Grady, B.P. Recent developments concerning the dispersion of carbon nanotubes in polymers. Macromol. Rapid Commun. 2010, 31, 247–257, doi:10.1002/marc.200900514.
[62]
Wunderlich, B. Macromolecular Physics; Academic Press: New York, NY, USA, 1976.