|
Nano Reviews 2010
Gold nanoparticles delivery in mammalian live cells: a critical reviewKeywords: gold nanoparticles , cell delivery , bionanotechnology , nanomaterials , photothermal microscopy , cell imaging , intracellular fate Abstract: Functional nanomaterials have recently attracted strong interest from the biology community, not only as potential drug delivery vehicles or diagnostic tools, but also as optical nanomaterials. This is illustrated by the explosion of publications in the field with more than 2,000 publications in the last 2 years (4,000 papers since 2000; from ISI Web of Knowledge, ‘nanoparticle and cell’ hit). Such a publication boom in this novel interdisciplinary field has resulted in papers of unequal standard, partly because it is challenging to assemble the required expertise in chemistry, physics, and biology in a single team. As an extreme example, several papers published in physical chemistry journals claim intracellular delivery of nanoparticles, but show pictures of cells that are, to the expert biologist, evidently dead (and therefore permeable). To attain proper cellular applications using nanomaterials, it is critical not only to achieve efficient delivery in healthy cells, but also to control the intracellular availability and the fate of the nanomaterial. This is still an open challenge that will only be met by innovative delivery methods combined with rigorous and quantitative characterization of the uptake and the fate of the nanoparticles. This review mainly focuses on gold nanoparticles and discusses the various approaches to nanoparticle delivery, including surface chemical modifications and several methods used to facilitate cellular uptake and endosomal escape. We will also review the main detection methods and how their optimum use can inform about intracellular localization, efficiency of delivery, and integrity of the surface capping. Rapha l Lévy is a BBSRC David Phillips Research Fellow at the University of Liverpool. He graduated in Physics at the University Louis Pasteur in Strasbourg (France). In 2002, after a Master in Soft Condensed Matter Physics, he obtained a PhD in Physics at the University Louis Pasteur. He then moved to the University of Liverpool as a Post-doctoral Marie Curie Research Fellow. In 2006, he obtained a prestigious David Phillips Fellowship, to develop single particle-based imaging in living cells (photothermal microscopy). His research interests include the design and characterization of nanomaterials and their interactions with living cells. Umbreen Shaheen completed her Master in Zoology and then lectured at the University of Balochistan. She studied biotechnology at the National Institute of Biotechnology and Genetic Engineering (NIBGE, Pakistan) and is currently doing her PhD at the University of Liverpool, on int
|