全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

Controlling the Nanoscale Patterning of AuNPs on Silicon Surfaces

DOI: 10.3390/nano3010192

Keywords: vapour-phase deposition, APTES, gold, nanoparticle, chemical nanopatterning

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study evaluates the effectiveness of vapour-phase deposition for creating sub-monolayer coverage of aminopropyl triethoxysilane (APTES) on silicon in order to exert control over subsequent gold nanoparticle deposition. Surface coverage was evaluated indirectly by observing the extent to which gold nanoparticles (AuNPs) deposited onto the modified silicon surface. By varying the distance of the silicon wafer from the APTES source and concentration of APTES in the evaporating media, control over subsequent gold nanoparticle deposition was achievable to an extent. Fine control over AuNP deposition (AuNPs/μm 2) however, was best achieved by adjusting the ionic concentration of the AuNP-depositing solution. Furthermore it was demonstrated that although APTES was fully removed from the silicon surface following four hours incubation in water, the gold nanoparticle-amino surface complex was stable under the same conditions. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to study these affects.

References

[1]  Rao, C.N.R.; Cheetham, A.K. Science and technology of nanomaterials: Current status and future prospects. J. Mater. Chem. 2001, 11, 2887–2894, doi:10.1039/b105058n.
[2]  Austin, M.D.; Ge, H.; Wu, W.; Li, M.; Yu, Z.; Wasserman, D.; Lyon, S.A.; Chou, S.Y. Fabrication of 5?nm line width and 14?nm pitch features by nanoimprint lithography. Appl. Phys. Lett. 2004, 84, 5299–5301, doi:10.1063/1.1766071.
[3]  Gao, H.-J.; Gao, L. Scanning tunneling microscopy of functional nanostructures on solid surfaces: Manipulation, self-assembly, and applications. Progress Surf. Sci. 2010, 85, 28–91, doi:10.1016/j.progsurf.2009.10.001.
[4]  Naujoks, N.; Stemmer, A. Using local surface charges for the fabrication of protein patterns. Colloids Surf. A 2004, 249, 69–72, doi:10.1016/j.colsurfa.2004.08.053.
[5]  Smith, J.C.; Lee, K.-B.; Wang, Q.; Finn, M.G.; Johnson, J.E.; Mrksich, M.; Mirkin, C.A. Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett. 2003, 3, 883–886, doi:10.1021/nl025956h.
[6]  Lee, M.; Kang, D.-K.; Yang, H.-K.; Park, K.-H.; Choe, S.Y.; Kang, C.; Chang, S.-I.; Han, M.H.; Kang, I.-C. Protein nanoarray on Prolinker? surface constructed by atomic force microscopy dip-pen nanolithography for analysis of protein interaction. Proteomics 2006, 6, 1094–1103, doi:10.1002/pmic.200500392.
[7]  Kraus, T.; Malaquin, L.; Schmid, H.; Riess, W.; Spencer, N.D.; Wolf, H. Nanoparticle printing with single-particle resolution. Nat. Nanotechnol. 2007, 2, 570–576, doi:10.1038/nnano.2007.262.
[8]  Hulteen, J.C.; Duyne, R.P.V. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vacuum Sci. Technol. A 1995, 13, 1553–1558, doi:10.1116/1.579726.
[9]  Grabar, K.C.; Freeman, R.G.; Hommer, M.B.; Natan, M.J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 1995, 67, 735–743, doi:10.1021/ac00100a008.
[10]  Park, S.-H.; Im, J.-H.; Im, J.-W.; Chun, B.-H.; Kim, J.-H. Adsorption kinetics of Au and Ag nanoparticles on functionalized glass surfaces. Microchem. J. 1999, 63, 71–91, doi:10.1006/mchj.1999.1769.
[11]  Bhat, R.R.; Fischer, D.A.; Genzer, J. Fabricating planar nanoparticle assemblies with number density gradients. Langmuir 2002, 18, 5640–5643, doi:10.1021/la025524m.
[12]  Bhat, R.R.; Genzer, J. Tuning the number density of nanoparticles by multivariant tailoring of attachment points on flat substrates. Nanotechnology 2007, 18, 025301, doi:10.1088/0957-4484/18/2/025301.
[13]  Brouwer, E.A.M.; Kooij, E.S.; Hakbijl, M.; Wormeester, H.; Poelsema, B. Deposition kinetics of nanocolloidal gold particles. Colloids Surf. A 2005, 267, 133–138.
[14]  Kooij, E.S.; Brouwer, E.A.M.; Wormeester, H.; Poelsema, B. Ionic strength mediated self-organization of gold nanocrystals: An AFM study. Langmuir 2002, 18, 7677–7682, doi:10.1021/la0257541.
[15]  Derjaguin, B.; Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chim. U.R.S.S. 1941, 14, 633–662.
[16]  Verwey, E.J.E.J.W.; Overbeek, J.T.G. Theory of the Stability of Lyophobic Colloids; Courier Dover Publications: Toronto, Canada, 1999.
[17]  Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D.G. Determination of size and concentration of gold nanoparticles from UV?Vis spectra. Anal. Chem. 2007, 79, 4215–4221, doi:10.1021/ac0702084.
[18]  Etienne, M.; Walcarius, A. Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium. Talanta 2003, 59, 1173–1188, doi:10.1016/S0039-9140(03)00024-9.
[19]  WSxM Software. Nanotec Cervantes FullMode AFM: Madrid, Spain. Available online: http://www.nanotec.es/products/wsxm/download.php (accessed on 15 March 2008).
[20]  CasaXPS Processing Software. Casa Software Ltd.: Teignmouth, UK. Available online: http://www.casaxps.com/ (accessed on 15 March 2008).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133