This paper presents the design of an MMIC oscillator operating at a 38?GHz frequency. This circuit was fabricated by the III–V Lab with the new InP/GaAsSb Double Heterojunction Bipolar Transistor (DHBT) submicronic technology ( ?nm). The transistor used in the circuit has a 15 μm long two-finger emitter. This paper describes the complete nonlinear modeling of this DHBT, including the cyclostationary modeling of its low frequency (LF) noise sources. The specific interest of the methodology used to design this oscillator resides in being able to choose a nonlinear operating condition of the transistor from an analysis in amplifier mode. The oscillator simulation and measurement results are compared. A 38?GHz oscillation frequency with 8.6?dBm output power and a phase noise of ?80?dBc/Hz at 100?KHz offset from carrier have been measured. 1. Introduction The developments in modern electronics (analog, digital, or mixed), whatever their intended applications (telecommunications, spectroscopy and astrophysics, plasma analysis, medical imaging, etc.) now concern applications operating from RF frequency spectrum up to the optical frequencies. In order to develop solid-state circuits operating in the millimeter wave range, new technological processes are emerging for manufacturing semiconductors operating in these domains. To achieve the performances required by such applications, a suitable solid-state technology must be available. III–V Lab provides a new InP/GaAsSb DHBT technology [1], which contains antimony in the base of the transistors and permits submicronic emitter sizes. The structure has been optimized to get an greater than 300?GHz and an equal to 200?GHz. In this context, the work presented in this paper demonstrates the feasibility of designing and manufacturing a low phase noise MMIC frequency source with this new technology. To provide the oscillator designer with the most relevant devices, various multifinger transistors have been measured, a number ranging from 2 to 8 have been compared and reported in [2]. For the higher-frequency applications, 2-finger devices were found to be best suited and selected for this design. In Section 2, we present the complete characterization and nonlinear modeling of the transistor, including its thermal behavior. Section 3 deals with the cyclostationary LF noise source modeling. Section 4 is devoted to the description of the oscillator design according to the new proposed methodology including the drawing of the MMIC layout. In Section 5, all the measurements are detailed and compared with the results predicted
References
[1]
J. Godin, V. Nodjiadjim, M. Riet et al., “V-band amplifier MMICs using multi-finger InP/GaAsSb DHBT technology,” in Proceedings of the Compound Semiconductor Integrated Circuit Symposium, pp. 1–4, October 2009.
[2]
M. Riet, V. Nodjiadjim, A. Scavennec et al., “InP/GaAsSb/InP multifinger DHBTs for power applications,” in Proceedings of the 20th International Conference on Indium Phosphide and Related Materials, pp. 1–3, May 2008.
[3]
H. Gummel and H. Poon, “A compact bipolar transistor mode,” in Proceedings of the Solide-State Circuits Conference Digest of Technical Papers, vol. 13, pp. 78–79, 1970.
[4]
O. Jardel, R. Quere, S. Heckmann, et al., “An electrothermal model for GaInP/GaAs power HBTs with enhanced convergence capabilities,” in Proceedings of the European Microwave Integrated Circuits Conference, pp. 296–299, Manchester, UK, September 2006.
[5]
T. Peyretaillade, M. Perez, S. Mons, et al., “A pulsed measurementbased electrothermal model of HBT with thermal stability prediction capabilitie,” in Proceedings of the Microwave Symposium Digest, vol. 3, pp. 1515–1518, Denver, Colo, USA, June 1997.
[6]
S. Heckmann, R. Sommet, J.-M. Nebus, et al., “Characterization and modeling of bias dependent breakdown and selfheating in GaInP/GaAs power HBT to improve high power amplifier design,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 12, pp. 2811–2819, 2002.
[7]
S. Laurent, G. Callet, J.-C. Nallatamby, M. Prigent, V. Nodjiadjim, and M. Riet, “Nonlinear model of inp/gaassb/inp dhbt process for design of a q-band mmic oscillator,” in Proceedings of the European Microwave Integarted Circuits, pp. 270–273, September 2010.
[8]
R. H Winckler, “Thermal properties of high power transistors,” IEEE Transactions on Electron Devices, vol. 14, pp. 260–263, 1967.
[9]
A. Liboa De Souza, J.-C. Nallatamby, M. Prigent, et al., “A methodology to characterize the low-frequency noise of InP based transistors,” in Proceedings of the Microwave Integrated Circuit Conference (EuMIC '08), pp. 123–126, October 2008.
[10]
A. L. De Souza, J.-C. Nallatamby, M. Prigent, and J. Obregon, “On the cyclostationary properties of the 1/f noise of microwave semiconductor devices,” in Proceedings of the IEEE MTT-S International Microwave Symposium Digest, pp. 1569–1572, June 2008.
[11]
J.-C. Nallatamby, M. Prigent, M. Camiade, A. Sion, C. Gourdon, and J. J. Obregon, “An advanced low-frequency noise model of GaInP-GaAs HBT for accurate prediction of phase noise in oscillators,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 5, pp. 1601–1611, 2005.
[12]
I. Getreu, Modeling The Bipolar Transistor, Tektronix, 1976.
[13]
A. Lisboa de Souza, J.-C. Nallatamby, M. Prigent, et al., “Low-frequency noise measurements of bipolar devices under high DC current density: whether transimpedance or voltage amplifiers,” in Proceedings of the European Microwave Integrated Circuits Conference, pp. 114–117, September 2006.
[14]
J.-C. Nallatamby, M. Prigent, and J. Obregon, “From large signal transistor noise sources modelling to the design of low phase noise oscillator circuits,” in Proceedings of the 28th European Microwave Conference Workshop on Non-linear Device Models and Low Phase-Noise Oscillator Design, 2006.
[15]
C. Gourdon, J.-C. Nallatamby, D. Baglieri, M. Prigent, M. Camiade, and J. Obregon, “Accurate design of HBT VCOs with flicker noise up-conversion minimization, using an advanced low-frequency cyclostationary noise model,” in Proceedings of the IEEE MTT-S International Microwave Symposium Digest, pp. 1519–1522, 2005.
[16]
C. Rheinfelder, F. Beisswanger, J. Gerdes et al., “A coplanar 38-GHz SiGe MMIC oscillator,” IEEE Microwave and Guided Wave Letters, vol. 6, no. 11, pp. 398–400, 1996.
[17]
M. Heins, D. Barlage, M. T. Fresina et al., “Low phase noise Ka-band VCOs using InGaP/GaAs HBTs and coplanar waveguide,” in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC '97), pp. 215–218, June 1997.
[18]
K. Hosoya, S. Tanaka, Y. Amamiya, T. Niwa, H. Shimawaki, and K. Honjo, “RF HBT oscillators with low-phase noise and high-power performance utilizing open-stubs resonator,” IEEE Transactions on Circuits and Systems I, vol. 53, no. 8, pp. 1670–1682, 2006.
[19]
A. Kurdoghlian, M. Mokhtari, C. H. Fields et al., “40 GHz fully integrated and differential monolithic VCO with wide tuning range in AIInAs/InGaAs HBT,” in Proceedings of the IEEE GaAs Digest, pp. 129–132, October 2001.
[20]
K. Tanji, T. Kaneko, Y. Amamiya, et al., “A 38GHz low-phase noise monolithic VCO For FM MOD using an AlGaAs/InGaAs HBT with p+/p regrown base contacts,” in Proceedings of the 28th European Microwave Conference, pp. 47–51, 1998.
[21]
H. Wang, K. W. Chang, L. Tran et al., “Low phase noise millimeter-wave frequency sources using InP-based HBT MMIC technology,” IEEE Journal of Solid-State Circuits, vol. 31, no. 10, pp. 1419–1424, 1996.
[22]
M. Odyniec, RF and Microwave Oscillator Design, ARTECH HOUSE, 2002, Edited by A. House.
[23]
T. Ohira, “Rigorous Q-factor formulation for one- and two-port passive linear networks from an oscillator noise spectrum viewpoint,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 12, pp. 846–850, 2005.