The nanocomposite gate insulating film of a pentacene-based thin film transistor was deposited by inkjet printing. In this study, utilizing the pearl miller to crumble the agglomerations and the dispersant to well stabilize the dispersion of nano-TiO2 particles in the polymer matrix of the ink increases the dose concentration for pico-jetting, which could be as the gate dielectric film made by inkjet printing without the photography process. Finally, we realized top contact pentacene-TFTs and successfully accomplished the purpose of directly patternability and increase the performance of the device based on the nanocomposite by inkjet printing. These devices exhibited p-channel TFT characteristics with a high field-effect mobility (a saturation mobility of ?0.58?cm2?V?1?s?1), a large current ratio (>103) and a low operation voltage (<6?V). Furthermore, we accorded the deposited mechanisms which caused the interface difference between of inkjet printing and spin coating. And we used XRD, SEM, Raman spectroscopy to help us analyze the transfer characteristics of pentacene films and the performance of OTFTs. 1. Introduction Organic thin film transistors (OTFTs) for display recently have been studied widely because of potential application in low cost, large area, and suiting for flexible electronics. They can be fabricated by simple soluble processes. However, the field mobility of OTFTs is lower and the threshold voltage is higher than that of the amorphous Si (a-Si) TFTs. Gate dielectrics plays a significant role in modifying the ameliorating of a field effect OTFTs [1, 2]. Currently, high-k materials are other ideal candidates and most of them are based on inorganic ceramic, which require widely expensive deposition process and higher annealing temperature. One way is to combine the advantages of inorganic high-k nanoparticles with organic soluble polymers to form the nanocomposite dielectrics [2–7]. The nanocomposite (NC) film is incompetent for photography to pattern as insulators of active matrix arrays and was introduced consequently into some new direct printing technology such as inkjet printing. Recently, inkjet printing (IJP) process has been developed for electrical devices and become a promising instrument for the display industry because of the possibility in mask-free process and patternablility for nanoscale. In this study, we investigated the correlation of characteristics of printed NC-films with various solid phases which affects the performance of O-TFTs application. We mixed cross-linked poly-4 vinyl phenol (PVP) solution and
References
[1]
G. Horowitz, M. Mottaghi, P. Lang et al., “On the crucial role of the insulator-semiconductor interface in organic thin-film transistors,” in 5th Organic Field-Effect Transistors V, vol. 6336, article 63360G of Proceedings of SPIE, San Diego, Calif, USA, August 2006.
[2]
W. H. Lee, C. C. Wang, and J. C. Ho, “Influence of nano-composite gate dielectrics on OTFT characteristics,” Thin Solid Films, vol. 517, no. 17, pp. 5305–5310, 2009.
[3]
W.-H. Lee, C.-C. Wang, W.-T. Chen, and J.-C. Ho, “Characteristic of organic thin film transistor with a high-k insulator of nano-TiO2 and polyimide blend,” Japanese Journal of Applied Physics, vol. 47, no. 12, pp. 8955–8960, 2008.
[4]
F. C. Chen, C. S. Chuang, Y. S. Lin, L. J. Kung, T. H. Chen, and H. P. D. Shieh, “Low-voltage organic thin-film transistors with polymeric nanocomposite dielectrics,” Organic Electronics, vol. 7, no. 5, pp. 435–439, 2006.
[5]
F. C. Chen, C. W. Chu, J. He, Y. Yang, and J. L. Lin, “Organic thin-film transistors with nanocomposite dielectric gate insulator,” Applied Physics Letters, vol. 85, no. 15, pp. 3295–3297, 2004.
[6]
C. Jung, A. Maliakal, A. Sidorenko, and T. Siegrist, “Pentacene-based thin film transistors with titanium oxide-polystyrene/ polystyrene insulator blends: high mobility on high K dielectric films,” Applied Physics Letters, vol. 90, no. 6, Article ID 062111, 2007.
[7]
P. Kim, X.-H. Zhang, B. Domercq et al., “Solution-processible high-permittivity nanocomposite gate insulators for organic field-effect transistors,” Applied Physics Letters, vol. 93, no. 1, Article ID 013302, 2008.
[8]
A. K. Sen and J. Darabi, “Droplet ejection performance of a monolithic thermal inkjet print head,” Journal of Micromechanics and Microengineering, vol. 17, no. 8, article 002, pp. 1420–1427, 2007.
[9]
J. H. Werth, M. Linsenbühler, S. M. Dammer et al., “Agglomeration of charged nanopowders in suspensions,” Powder Technology, vol. 133, no. 1–3, pp. 106–112, 2003.
[10]
A. Rockett, The Materials Science of Semiconductors, Springer, New York, NY, USA, 2008.
[11]
H. Watanabe, S. Ando, H. Aota, M. Dainin, Y. J. Chun, and K. Taniguchi, “CMOS voltage reference based on gate work function differences in poly-Si controlled by conductivity type and impurity concentration,” IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 987–994, 2003.
[12]
G. Horowitz, “Organic field-effect transistors,” Advanced Materials, vol. 10, no. 5, pp. 365–377, 1998.
[13]
C. S. Chuang, F. C. Chen, and H. P. D. Shieh, “Organic thin-film transistors with reduced photosensitivity,” Organic Electronics, vol. 8, no. 6, pp. 767–772, 2007.
[14]
I. Yagi, K. Tsukagoshi, and Y. Aoyagi, “Growth control of pentacene films on SiO2/Si substrates towards formation of flat conduction layers,” Thin Solid Films, vol. 467, no. 1-2, pp. 168–171, 2004.
[15]
L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, and H. E. Katz, “Intrinsic transport properties and performance limits of organic field-effect transistors,” Science, vol. 272, no. 5267, pp. 1462–1464, 1996.
[16]
T. W. Kelley, D. V. Muyres, F. P. Baude, T. P. Smith, and T. D. Jones, “High performance organic. Thin film transistors,” Materials Research Society Symposium Proceedings, vol. 771, pp. L6.5.1–L6.5.10, 2003.
[17]
M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors,” Applied Physics Letters, vol. 81, no. 2, p. 268, 2002.
[18]
A. S. Davydov, Theory of Molecular Excitons, McGraw-Hill, New York, NY, USA, 1971.
[19]
W. Y. Chou and H. L. Cheng, “An orientation-controlled pentacene film aligned by photoaligned polyimide for organic thin-film transistor applications,” Advanced Functional Materials, vol. 14, no. 8, pp. 811–815, 2004.
[20]
H. L. Cheng, W. Y. Chou, C. W. Kuo et al., “Influence of electric field on microstructures of pentacene thin films in field-effect transistors,” Advanced Functional Materials, vol. 18, no. 2, pp. 285–293, 2008.
[21]
H. L. Cheng, W. Y. Chou, C. W. Kuo, F. C. Tang, and Y. W. Wang, “Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy,” Applied Physics Letters, vol. 88, no. 16, Article ID 161918, 2006.
[22]
H. L. Cheng, X. W. Liang, W. Y. Chou et al., “Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: application to pentacene-based organic transistors,” Organic Electronics, vol. 10, no. 2, pp. 289–298, 2009.