全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays

DOI: 10.1186/1471-2202-7-61

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using 3D MEAs, we were able to record larger fEPSPs compared to signals measured by planar MEAs. Several stimulation protocols were used to induce long-term potentiation (LTP) of synaptic responses in the CA1 area recorded following excitation of Sch?ffer collateral/commissural fibres. Either two trains of high frequency tetanic stimulation or three trains of theta-burst stimulation caused a persistent, pathway specific enhancement of fEPSPs that remained significantly elevated for at least 60 min. A third LTP induction protocol that comprised 150 pulses delivered at 5 Hz, evoked moderate LTP if excitation strength was increased to 1.5× of the baseline stimulus. In all cases, we observed a clear spatial plasticity gradient with maximum LTP levels detected in proximal apical dendrites of pyramidal neurones. No significant differences in the manifestation of LTP were observed between 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice with the three protocols used. All forms of plasticity were sensitive to inhibition of N-methyl-D-aspartate (NMDA) receptors.Principal features of LTP (magnitude, pathway specificity, NMDA receptor dependence) recorded in the hippocampal slices using MEAs were very similar to those seen in conventional glass electrode experiments. Advantages of using MEAs are the ability to record from different regions of the slice and the ease of conducting several experiments on a multiplexed platform which could be useful for efficient screening of novel transgenic mice.The dynamically changing strength of connections between neurones was proposed to be a mechanism for memory formation more than a century ago [1-3]. In 1949, Hebb provided a theoretical framework for this hypothesis [4] and in the 1960s this concept gained crucial experimental support when it was discovered that neurones can alter their firing properties upon experiencing particular patterns of external stimulation, i.e. they exhibit synaptic plasticity [5]. A classical example of synaptic plast

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133