全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Molecules  2013 

α(δ')-Michael Addition of Alkyl Amines to Dimethyl (E)-hex-2-en-4-ynedioate: Synthesis of α,β-Dehydroamino Acid Derivatives

DOI: 10.3390/molecules18032611

Keywords: α-Michael addition, conjugated enyne, dehydroamino acids

Full-Text   Cite this paper   Add to My Lib

Abstract:

The direct nucleophilic addition of alkyl amines to the α(δ')-carbon atom of dimethyl ( E)-hex-2-en-4-ynedioate to generate α,β-dehydroamino acid derivatives is reported. Herein, we have studied the reactivity of various primary and secondary alkyl amines in the α-selective nucleophilic conjugate addition to conjugated dimethyl ( E)-hex-2-en-4-ynedioate. The reaction with primary alkyl amines gives only the (2 E,4 E)-stereoisomer, while that with secondary alkyl amines gives the (2 E,4 E) and (2 Z,4 E)-stereoisomers of dimethyl (2-alkylamino)-muconic ester.

References

[1]  March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, NY, USA, 1992.
[2]  Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon: Oxford, UK, 1992.
[3]  Jung, M.E. Comprehensive Organic Synthesis; Trost, B.M., Fleming, I., Semmelhack, M.F., Eds.; Pergamon: Oxford, UK, 1991; Volume 4, pp. 1–67.
[4]  Imanzadeh, G.; Ahmadi, F.; Zamanloo, M.; Mansoori, Y. Tetrabutylammonium Bromide Media Aza-Michael Addition of 1,2,3,6-Tetrahydrophthalimide to Symmetrical Fumaric Esters and Acrylic Esters under Solvent-Free Conditions. Molecules 2010, 15, 7353–7362, doi:10.3390/molecules15107353.
[5]  Jiang, Z.-Y.; Yang, H.-M.; Ju, Y.-D.; Li, L.; Luo, M.-X.; Lai, G.-Q.; Jiang, J.-X.; Xu, L.-W. Organocatalytic Michael Addition of 1,3-Dicarbonyl Indane Compounds to Nitrostyrenes. Molecules 2010, 15, 2551–2563, doi:10.3390/molecules15042551.
[6]  Wang, Y.; Yuan, Y.-Q.; Guo, S.-R. Silica Sulfuric Acid Promotes Aza-Michael Addition Reactions under Solvent-Free Condition as a Heterogeneous and Reusable Catalyst. Molecules 2009, 14, 4779–4789, doi:10.3390/molecules14114779.
[7]  Escalante, J.; Carrillo-Morales, M.; Linzaga, I. Michael Additions of Amines to Methyl Acrylates Promoted by Microwave Irradiation. Molecules 2008, 13, 340–347, doi:10.3390/molecules13020340.
[8]  Chen, H.; Zhong, X.; Wei, J. Stereoselective Syntheses of Fluorescent Non-Natural Aromatic Amino Acids Based on Asymmetric Michael Additions. Molecules 2007, 12, 1170–1182, doi:10.3390/12051170.
[9]  Davies, S.G.; Lee, J.A.; Roberts, P.M.; Thomson, J.E.; Yin, J. Double Asymmetric Induction as a Mechanistic Probe: The Doubly Diastereoselective Conjugate Addition of Enantiopure Lithium Amides to Enantiopureα,β-Unsaturated Esters and Enantiopureα,β-Unsaturated Hydroxamates. Tetrahedron 2011, 67, 6382–6403, doi:10.1016/j.tet.2011.05.102.
[10]  Davies, S.G.; Smith, A.D.; Price, P.D. The Conjugate Addition of Enantiomerically Pure Lithium Amides as Homochiral Ammonia Equivalents: Scope, Limitations and Synthetic Applications. Tetrahedron Asymmetry 2005, 16, 2833–2891, doi:10.1016/j.tetasy.2005.08.006.
[11]  Lewandowska, E. Substitution at the α-Carbons of α,β-Unsaturated Carbonyl Compounds: Anti-Michael Addition. Tetrahedron 2007, 63, 2107–2122, doi:10.1016/j.tet.2006.10.040.
[12]  Bi, X.; Zhang, J.; Liu, Q.; Tan, J.; Li, B. IntramolecularAza-Anti-Michael Addition of an Amide Anion to Enones: A Regiospecific Approach to Tetramic Acid Derivatives. Adv. Synth. Catal. 2007, 349, 2301–2306, doi:10.1002/adsc.200600542.
[13]  Li, Y.; Xu, X.; Tan, J.; Liao, P.; Zhang, J.; Liu, Q. Polarity-Reversible Conjugate Addition Tuned by Remote Electronic Effects. Org. Lett. 2010, 12, 244–247, doi:10.1021/ol902551m.
[14]  Ballini, R.; Bazán, N.A.; Bosica, G.; Palmieri, A. Uncatalyzed, Anti-Michael Addition of Amines to β-Nitroacrylates: Practical, Eco-Friendly Synthesis of β-Nitro-α-Amino Esters. Tetrahedron Lett. 2008, 49, 3865–3867, doi:10.1016/j.tetlet.2008.04.076.
[15]  Ballini, R.; Bosica, G.; Palmieri, A.; Bakhtiari, K. Solvent-Free, Anti-Michael Addition of Active Methylene Derivatives to β-Nitroacrylates: Eco-Friendly, Chemoselective Synthesis of PolyfunctionalizedNitroalkanes. Synlett 2009, 2009, 268–270.
[16]  Wilson, J.E.; Sun, J.; Fu, G.C. StereoselectivePhosphine-Catalyzed Synthesis of Highly Functionalized Diquinanes. Angew.Chem. Int. Ed. Engl. 2010, 49, 161–163, doi:10.1002/anie.200905125.
[17]  Zhu, X.-F.; Henry, C.E.; Kwon, O. Stable Tetravalent PhosphoniumEnolate Zwitterions. J. Am. Chem. Soc. 2007, 129, 6722–6723.
[18]  Lecerclé, D.; Sawicki, M.; Taran, F. Phosphine-Catalyzed α-P-Addition on Activated Alkynes: A new route to P?C?P backbones. Org. Lett. 2006, 8, 4283–4285, doi:10.1021/ol061589v.
[19]  Shim, J.-G.; Park, J.C.; Cho, C.S.; Shim, S.C.; Yamamoto, Y. Catalytic and Highly Regiospecific Carbon–Carbon Bond Formation at α-Position of Michael Acceptor by Palladium Complex. Chem. Commun. 2002, 2002, 852–853.
[20]  Klumpp, G.W.; Mierop, A.J.C.; Vrielink, J.J.; Brugman, A.; Schakel, M. Anti-Michael Carbolithiation of Silicon and Phenyl-Substituted α,β-Unsaturated Secondary Amides. J. Am. Chem. Soc. 1985, 107, 6740–6742, doi:10.1021/ja00309a070.
[21]  Aurell, M.J.; Ba?uls, M.J.; Mestres, R.; Mu?oz, E. On the Mechanism of the Addition of Organolithium Reagents to Cinnamic Acids. Tetrahedron 2001, 57, 1067–1074.
[22]  Chatfield, D.C.; Augsten, A.; D’Cunha, C.; Lewandowska, E.; Wnuk, S.F. Theoretical and Experimental Study of the Regioselectivity of Michael Additions. Eur. J. Org. Chem. 2004, 2004, 313–322.
[23]  Lewandowska, E.; Chatfield, D.C. Regioselectivity of Michael Additions to 3-(Pyridin-3-yl or Pyrimidin-2-yl)-Propenoates and their N-Oxides—Experimental and Theoretical Studies. Eur. J. Org. Chem. 2005, 2005, 3297–3303, doi:10.1002/ejoc.200500058.
[24]  Yuan, H.; Zheng, Y.; Zhang, J. Mechanism Study of the Intramolecular Anti-Michael Addition of N-Alkylfurylacrylacetamides. J. Org. Chem. 2012, 77, 8744–8749.
[25]  Trost, B.M.; Dake, G.R. Nucleophilic α-Addition to Alkynoates. A Synthesis of Dehydroamino Acids. J. Am. Chem. Soc. 1997, 119, 7595–7596, doi:10.1021/ja971238z.
[26]  Deng, J.-C.; Chuang, S.-C. Three-Component and Nonclassical Reaction of Phosphines with Enynes and Aldehydes: Formation of γ-Lactones Featuring α-Phosphorus Ylides. Org. Lett. 2011, 13, 2248–2251.
[27]  Chuang, S.-C.; Deng, J.-C.; Chan, F.-W.; Chen, S.-Y.; Huang, W.-J.; Lai, L.-H.; Rajeshkumar, V. [3+2] Cycloaddition of Dialkyl (E)-Hex-2-en-4-ynedioates to [60]Fullerene by Phosphane-Promoted Tandem α(d')-Michael Additions. Eur. J. Org. Chem. 2012, 2012, 2606–2613.
[28]  Kazmaier, U. Amino Acids, Peptides and Proteins in Organic Chemistry; Hughes, A.B., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; Volume 2, pp. 3–34.
[29]  Mathur, P.; Ramakumar, S.; Chauhan, V.S. Peptide Design Using α,β-Dehydroamino Acids: From β-Turns to Helical Hairpins. Pept. Sci. 2004, 76, 150–161, doi:10.1002/bip.10571.
[30]  Ferreira, P.M.T.; Maia, H.L.S.; Monteiro, L.S.; Sacramento, J. High Yielding Synthesis of Dehydroamino Acid and Dehydropeptide Derivatives. J. Chem. Soc. Perkin Trans. 1 1999, 1999, 3697–3703.
[31]  Ramachandran, P.V.; Rudd, M.T.; Reddy, M.V.R. Stereoselective Synthesis of Hex-2-(E)-en-4-yn-1,6-dioates and E,Z-Muconic Acid Diesters via Organo-Catalyzed Self-Coupling of Propiolates. Tetrahedron Lett. 2005, 46, 2547–2549, doi:10.1016/j.tetlet.2005.02.098.
[32]  Zhou, L.-H.; Yu, X.-Q.; Pu, L. Reactivity of a PropiolateDimer with Nucleophiles and an Efficient Synthesis of Dimethyl α-Aminoadipate. Tetrahedron Lett. 2010, 51, 425–427, doi:10.1016/j.tetlet.2009.11.048.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133