全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Molecules  2013 

Cell Suspension Culture of Eriobotrya japonica Regulates the Diabetic and Hyperlipidemic Signs of High-Fat-Fed Mice

DOI: 10.3390/molecules18032726

Keywords: Eriobotrya japonica, terpenoids, diabetes, hyperlipidemia, AMP-activated protein kinase phosphorylation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study investigates the anti-hyperlipidemic and antihyperglycemic effects and mechanism in high-fat (HF)-fed mice of cell suspension culture of Eriobotrya japonica (TA), which contains a great number of pentacyclic terpenoids. Firstly, C57BL/6J mice were randomly divided into two groups: the control (CON) group was fed with a low-fat diet (n = 9), whereas the experimental group was fed a 45% HF diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and was orally given TA or rosiglitazone or not for 4 weeks. Blood and visceral adipose tissue, liver tissue and skeletal muscle were examined. Treatment with TA reduced body weight gain, weights of white adipose tissue (WAT) (including epididymal, perirenal, mesenteric WAT and visceral fat), and hepatic triacylglycerol content significantly without affecting food intake in diet-induced diabetic mice. TA effectively prevented HF diet-induced increases in the levels of blood glucose, insulin, leptin and HOMA-IR index ( p < 0.001, p < 0.05, p < 0.05, p < 0.01, respectively) and attenuated insulin resistance. Treatment with TA, adipocytes in the visceral depots showed a reduction in size. TA effectively significantly increased the protein contents of phosphorylation of AMPK-α (Thr172) both in liver and adipose tissue. It is shown that TA exhibits hypolipidemic effect in HF-fed mice by decreasing gene expressions of fatty acid synthesis, including acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) 2, which catalyzes the final step in the synthesis of triglycerides, and antidiabetic properties occurred as a result of decreased hepatic glucose production via phosphenolpyruvate carboxykinase (PEPCK) down- regulation, improved insulin sensitization and TA (at 1.0 g/kg dose) decreased expression of hepatic and adipose 11-β-hydroxysteroid dehydroxygenase (11β-HSD1) gene, which contributed in attenuating diabetic state. Futhermore, TA at doses of 0.5 and 1.0 g/kg had serum lipid-lowering action characterized by the inhibition of DGAT 1 expression. Thus, amelioration of diabetic and dyslipidemic state by TA in HF-fed mice occurred by regulation of PEPCK, DGAT2 and AMPK phosphorylation.

References

[1]  O’Rahilly, S.; Turner, R.C.; Matthews, D.R. Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N. Engl. J. Med. 1988, 318, 1225–1230, doi:10.1056/NEJM198805123181902.
[2]  Samuel, V.T.; Liu, Z.X.; Qu, X.; Elder, B.D.; Bilz, S.; Befroy, D.; Romanelli, A.J.; Shulman, G.I. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 2004, 279, 32345–32353.
[3]  Noreen, W.; Wadood, A.; Hidayat, H.K.; Wahid, S.A. Effect of Eriobotrya japonica on blood glucose levels of normal and alloxan-diabetic rabbits. Planta Med. 1988, 54, 196–199, doi:10.1055/s-2006-962402.
[4]  Tommasi, N.D.; Shimone, F.D.; Pizza, C. Constituents of Eriobotrya japonica: A study of their antiviral properties. J. Nat. Prod. 1992, 55, 1067–1073, doi:10.1021/np50086a006.
[5]  Louati, S.; Simmonds, M.S.J.; Grayer, R.J.; Kite, G.C.; Damak, M. Flavonoids from Eriobotrya japonica (Rosaceae) growing in Tunisia. Biochem. Syst. Ecol. 2003, 31, 99–101, doi:10.1016/S0305-1978(02)00072-8.
[6]  Ding, C.K.; Chachin, K.; Ueda, Y.; Imahori, Y.; Wang, C.Y. Metabolism of phenolic compounds during loquat fruit development. J. Agric. Food Chem. 2001, 49, 2883–2888.
[7]  Zhuang, Y.F. Determination of amygdalin content in Eriobotrya japonica leaves by high performance liquid chromatography (HPLC). Strait Pharm. J. 2002, 14, 64–65.
[8]  Liang, Z.Z.; Aquino, R.; De Feo, V.; De Simone, F.; Pizza, C. Polyhydroxylated triterpenes from Eriobotrya japonica. Planta Med. 1990, 56, 330–332, doi:10.1055/s-2006-960973.
[9]  Godoy, H.T.; Amaya, D.B. Carotenoid composition and vitamin A value of Brazilian loquat (Eriobotrya japonica Lindl.). Arch. Latinoam. Nutr. 1995, 45, 336–339.
[10]  Ju, J.H.; Zhou, L.; Lin, G.; Liu, D.; Wang, L.W.; Yang, J.S. Studies on constituents of triterpene acids from Eriobotrya japonica and their anti-inflammatory and antitussive effects. J. Chin. Pharmacol. 2003, 38, 752–757.
[11]  Park, H.J.; Yoon, S.H.; Han, L.S.; Zheng, L.T.; Jung, K.H.; Uhm, Y.K.; Lee, J.H.; Jeong, J.S.; Joo, W.S.; Yim, S.Y.; et al. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World J. Gastroenterol. 2005, 11, 5156–5161.
[12]  Wen, X.; Sun, H.; Liu, J.; Wu, G.; Zhang, L.; Wu, X.; Ni, P. Pentacyclic triterpenes. Part 1: The first examples of naturally occurring pentacyclic triterpenes as a new class of inhibitors of glycogen phosphorylases. Bioorg. Med. Chem. Lett. 2005, 15, 4944–4948, doi:10.1016/j.bmcl.2005.08.026.
[13]  Wen, X.; Xia, J.; Cheng, K.; Zhang, L.; Zhang, P.; Liu, J.; Zhang, L.; Ni, P.; Sun, H. Pentacyclic triterpenes. Part 5: Synthesis and SAR study of corosolic acid derivatives as inhibitors of glycogen phosphorylases. Bioorg. Med. Chem. Lett. 2007, 17, 5777–5782.
[14]  Liu, J. Oleanolic acid and ursolic acid: Research perspectives. J. Ethnopharmacol. 2005, 100, 92–94, doi:10.1016/j.jep.2005.05.024.
[15]  Ivorra, M.D.; Paya, M.; Villar, A. Hypoglycemic and insulin release effects of tormentic acid: A new hypoglycemic natural product. Planta Med. 1988, 54, 282–285, doi:10.1055/s-2006-962433.
[16]  Zhang, Q.; Chang, Z.; Wang, Q. Ursane triterpenoids inhibit atherosclerosis and xanthoma in LDL receptor knockout mice. Cardiovasc. Drugs Ther. 2006, 20, 349–357, doi:10.1007/s10557-006-0509-4.
[17]  Miura, T.; Itoh, Y.; Kaneko, T.; Ueda, N.; Ishida, T.; Fukushima, M.; Matsuyama, F.; Seino, Y. Corosolic acid induces GLUT4 translocation in genetically type 2 diabetic mice. Biol. Pharm. Bull. 2004, 27, 1103–1105, doi:10.1248/bpb.27.1103.
[18]  Yamada, K.; Hosokawa, M.; Yamada, C.; Watanabe, R.; Fujimoto, S.; Fujiwara, H.; Kunitomo, M.; Miura, T.; Kaneko, T.; Tsuda, K.; et al. Dietary corosolic acid ameliorates obesity and hepatic steatosis in KK-Ay mice. Biol. Pharm. Bull. 2008, 31, 651–655, doi:10.1248/bpb.31.651.
[19]  Wen, X.A.; Zhang, P.; Liu, J. Pentacyclic triterpenes. Part 2: Synthesis and biological evaluation of maslinic acid derivatives as glycogen phosphorylase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 722–726, doi:10.1016/j.bmcl.2005.10.014.
[20]  Jang, S.M.; Yee, S.T.; Choi, J. Ursolic acid enhances the cellular immune system and pancreatic β-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. Int. Pharmacol. 2009, 9, 113–119.
[21]  Somova, L.O.; Ndar, A.; Rammanan, P.; Shode, F.O. Cardiovascular, antihyperlipidemic and oxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 2003, 10, 115–121, doi:10.1078/094471103321659807.
[22]  Jayaprakasam, B.; Olson, L.K.; Schutzki, R.E.; Tai, M.H.; Nair, M.G. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J. Agric. Food Chem. 2006, 54, 243–248, doi:10.1021/jf0520342.
[23]  Jia, Y.; Bhuiyan, M.J.H.; Jun, H.; Lee, J.H.; Hoang, M.H.; Lee, H.-J.; Kim, N.; Lee, D.; Hwang, K.Y.; Hwang, B.Y.; et al. Ursolic acid is a PPAR-α agonist that regulates hepatic lipid metabolism. Bioorg. Med. Chem. Lett. 2011, 21, 5876–5880.
[24]  Taniguchi, S.; Imayoshi, Y.; Kobayashi, E.; Takamatsu, Y.; Ito, H.; Hatano, T.; Sakagami, H.; Tokuda, H.; Nishino, H.; Sugita, D.; Shimura, S.; Yoshida, T. Production of bioactive triterpenes by Eriobotrya japonica calli. Photochemistry 2002, 59, 315–323.
[25]  Liu, C.Z.; Wang, Y.C.; Ouyang, F.; Ye, H.C.; Li, G.F.; Guo, Z.C. Research advance in plant tissue culture using bioreactor technology. Eng. Chem. Metall. 1999, 20, 329–336.
[26]  Shakti, M.; Manoj, K.G.; Arun, K.K.; Bhartendu, N.M. Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. Afr. J. Biotechnol. 2007, 6, 1484–1492.
[27]  Kim, H.J.; Kim, S.K.; Shim, W.S.; Lee, J.H.; Hur, K.Y.; Kang, E.S.; Ahn, C.W.; Lim, S.K.; Lee, H.C.; Cha, B.S. Rosiglitazone improves insulin sensitivity with increased serum leptin levels in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2008, 81, 42–49, doi:10.1016/j.diabres.2008.02.001.
[28]  Yuen, V.G.; Bhanot, S.; Battell, M.L.; Orvig, C.; McNeill, J.H. Chronic glucose-lowering effects of rosiglitazone and bis (ethylmaltolato) oxovanadium (IV) in ZDF rats. Can. J. Physiol. Pharmacol. 2003, 81, 1049–1055, doi:10.1139/y03-094.
[29]  Harrity, T.; Farrelly, D.; Tieman, A.; Chu, C.; Kunselman, L.; Hariharan, N. Muraglitazar, a novel dual (α/γ) peroxisome proliferator activated receptor activator, improves diabetes and other metabolic abnormalities and preserves β-cell function in db / db mice. Diabetes 2006, 55, 240–248, doi:10.2337/diabetes.55.01.06.db05-0648.
[30]  Rangwala, S.M.; Lazar, M.A. Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. PPAR gamma, Glucose homeostasis. Trends Pharmacol. Sci. 2004, 25, 331–336, doi:10.1016/j.tips.2004.03.012.
[31]  Yu, S.; Matsusue, K.; Kashireddy, P.; Cao, W.Q.; Yeldandi, V.; Reddy, J.K. Adipocyte-specific gene expression and adipogenic steatosis in the mice liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J. Biol. Chem. 2003, 278, N498–N505.
[32]  Karalliedde, J.; Buckingham, R.E. Thiazolidinediones and their fluid-related adverse effects: Facts, Fiction and putative management strategies. Drug Safety 2007, 30, 741–53, doi:10.2165/00002018-200730090-00002.
[33]  Cases, S.; Smith, S.J.; Zheng, Y.W.; Myers, H.M.; Lear, S.R.; Sande, E.; Novak, S.; Colin, C.; Welch, C.B.; Lusis, A.J.; et al. Identification of a gene encoding an acyl CoA: Diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl. Acad. Sci. USA 1998, 95, 13018–13023.
[34]  Oelkers, P.; Behari, A.; Cromley, D.; Billheimer, J.T.; Sturley, S.L. Characterization of two human genes encoding acyl coenzyme A: Cholesterol acyltransferase-related enzymes. J. Biol. Chem. 1998, 273, 26765–26771.
[35]  Cases, S.; Stone, S.J.; Zhou, P.; Yen, E.; Tow, B.; Lardizabal, K.D.; Voelker, T.; Farese Jr, R.V. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J. Biol. Chem. 2001, 276, 38870–38876.
[36]  Smith, S.J.; Cases, S.; Jensen, D.R.; Chen, H.C.; Sande, E.; Tow, B.; Sanan, D.A.; Raber, J.; Eckel, R.H.; Farese, R.V., Jr. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nat. Genet. 2000, 25, 87–90.
[37]  Chen, H.C.; Jensen, D.R.; Myers, H.M.; Eckel, R.H.; Farese, R.V., Jr. Obesity resistance and enhanced glucose metabolism in mice transplanted with white adipose tissue lacking acyl CoA:diacylglycerol acyltransferase 1. J. Clin. Invest. 2003, 111, 1715–1722.
[38]  Zhao, G.; Souers, A.J.; Voorbach, M.; Falls, H.D.; Droz, B.; Brodjian, S.; Lau, Y.Y.; Iyengar, RR.; Gao, J.; Judd, A.S. Validation of diacyl glycerolacyltransferase I as a novel target for the treatment of obesity and dyslipidemia using a potent and selective small molecule inhibitor. J. Med. Chem. 2008, 51, 380–383, doi:10.1021/jm7013887.
[39]  Birch, A.M.; Birtles, S.; Buckett, L.K.; Kemmitt, P.D.; Smith, G.J.; Smith, T.J.D.; Turnbull, A.V.; Wang, S.J.Y. Discovery of a potent, selective, and orally efficacious pyrimidinooxazinyl bicyclo-octaneacetic acid diacylglycerol acyltransferase-1 inhibitor. J. Med. Chem. 2009, 52, 1558–1568.
[40]  Yamamoto, T.; Yamaguchi, H.; Miki, H.; Shimada, M.; Nakada, Y.; Ogino, M.; Asano, K.; Aoki, K.; Tamura, N.; Masago, M.; et al. Coenzyme A:diacylglycerol acyltransferase 1 inhibitor ameliorates obesity, liver steatosis, and lipid metabolism abnormality in KKAy mice fed high-fat or high-carbohydrate diets. Eur. J. Pharmacol. 2010, 640, 243–249, doi:10.1016/j.ejphar.2010.04.050.
[41]  King, A.J.; Segreti, J.A.; Larson, K.J.; Souers, A.J.; Kym, P.R.; Reilly, R.M.; Zhao, G.; Mittelstadt, S.W.; Cox, B.F. Diacylglycerol acyltransferase inhibition lowers serum triglycerides in the Zucker Fatty rat and the hyperlipidemic hamster. J. Pharmacol. Exp. Ther. 2009, 330, 526–531, doi:10.1124/jpet.109.154047.
[42]  Foretz, M.; Taleux, N.; Guigas, B.; Horman, S.; Beauloye, C.; Andreelli, F.; Viollet, B. Regulation of energy metabolism by AMPK: a novel therapeutic approach for the treatment of metabolic and cardiovascular diseases. Med. Sci. (Paris) 2006, 22, 381–383, doi:10.1051/medsci/2006224381.
[43]  Viollet, B.; Lantier, L.; Devin-Leclerc, J.; Hebrard, S.; Amouyal, C.; Mounier, R.; Foretz, M.; Andreelli, F. Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front. Biosci. 2009, 14, 3380–3400.
[44]  Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001, 108, 1167–1174.
[45]  Stein, S.C.; Woods, A.; Jones, N.A.; Davison, M.D.; Carling, D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 2000, 345, 437–443, doi:10.1042/0264-6021:3450437.
[46]  Kato, M.; Higuchi, N.; Enjoji, M. Reduced hepatic expression of adipose tissue triglyceride lipase and CGI-58 may contribute to the development of non-alcoholic fatty liver disease inpatients with insulin resistance. Scand. J. Gastroenterol. 2008, 43, 1018–1019, doi:10.1080/00365520802008140.
[47]  Zimmermann, R.; Strauss, J.G.; Haemmerle, G.; Schoiswohl, G.; Birner-Gruenberger, R.; Riederer, M.; Lass, A.; Neuberger, G.; Eisenhaber, F.; Hermetter, A.; et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004, 306, 1383–1386.
[48]  Shih, C.C.; Lin, C.H.; Wu, J.B. Eriobotrya japonica improves hyperlipidaemia and reverses insulin resistance in high-fat-fed mice. Phytother. Res. 2010, 24, 1769–1780, doi:10.1002/ptr.3143.
[49]  Surwit, R.S.; Kuhn, C.M.; Cochrane, C.; McCubbin, J.A.; Feinglos, M.N. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 1988, 37, 1163–1167.
[50]  Ahren, B.; Pacini, G. Importance of quantifying insulin secretion in relation to insulin sensitivity to accurately assess beta cell function in clinical studies. Eur. J. Endocrinol. 2005, 15, 97–104.
[51]  Gil-Campos, M.; Canete, R.; Gil, A. Adiponectin, the missing link in insulin resistance and obesity. Clin. Nutr. 2004, 23, 963–974, doi:10.1016/j.clnu.2004.04.010.
[52]  Giorgino, F.; Laviola, L.; Eriksson, J.W. Regional differences of insulin action in adipose tissue: Insights from in vivo and in vitro studies. Acta Physiol. Scand. 2005, 183, 13–30, doi:10.1111/j.1365-201X.2004.01385.x.
[53]  Pan, Y.; Zheng, J.M.; Zhao, H.Y.; Li, Y.J.; Xu, H.; Wei, G. Relationship between drug effects and particle size of insulin-loaded bioadhesive microsperes. Acta Pharmacol. Sin. 2002, 23, 1051–1056.
[54]  Koeilevtsev, Y.; Holmes, M.C.; Burchell, A.; Houston, P.M.; Schmoll, D.; Jamieson, P.; Best, R.; Brown, R.; Edwards, C.R.W.; Seckl, J.R.; et al. 11β-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc. Natl. Acad. Sci. USA 1997, 94, 14924–14929.
[55]  Alberts, P.; Nilsson, C.; Selen, G.; Engblom, L.O.M.; Edling, N.M.H; Norling, S.;Klingstr?m, G.; Larsson, C.; Forsgren, M.; Ashkzari, M.; et al. Selective inhibition of 11β-hydroxysteroid dehydrogenase type 1 improves hepatic insulin sensitivity in hyperglycemic mice strains. Endocrinology 2003, 144, 4755–4762, doi:10.1210/en.2003-0344.
[56]  Alberti, L.; Girola, A.; Gilardini, L.; Conti, A.; Cattaldo, S.; Micheletto, G.; Invitti, C. Type 2 diabetes and metabolic syndrome are associated with increased expression of 11beta hydroxysteroid dehydrogenase 1 in obese subjects. Int. J. Obes. (Lond) 2007, 31, 1826–1831, doi:10.1038/sj.ijo.0803677.
[57]  Kissebah, A.H. Central obesity: Measurement and metabolic effects. Diabetes Rev. 1997, 5, 8–20.
[58]  Gaidhu, M.P.; Fediuc, S.; Anthony, N.M.; So, M.; Mirpourian, M.; Perry, R.L.; Ceddia, R.B. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL. J. Lipid Res. 2009, 50, 704–715.
[59]  McGarry, J.D.; Brown, N.F. The mitochondrial carnitine palmitoyl-transferase system from concept to molecular analysis. Eur. J. Biochem. 1997, 244, 1–14.
[60]  Kallen, C.B.; Lazar, M.A. Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA 1996, 93, 5793–5796, doi:10.1073/pnas.93.12.5793.
[61]  Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996, 334, 292–295, doi:10.1056/NEJM199602013340503.
[62]  Wu, X.; Motoshima, H.; Mahadev, K.; Stalker, T.J.; Scalia, R.; Goldstein, B.J. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 2003, 52, 1355–1363, doi:10.2337/diabetes.52.6.1355.
[63]  Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002, 8, 1288–1295, doi:10.1038/nm788.
[64]  Minokoshi, Y.; Kim, Y.-B.; Peroni, O.D.; Fryer, L.G.D.; Müller, C.; Carling, D.; Kahn, B.B. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein. Nature 2002, 415, 339–343.
[65]  Hotamisligil, G.S.; Johnson, R.S,.; Distel, R.J.; Ellis, R.; Papaioannou, V.E.; Spiegelman, B.M. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 1996, 274, 1377–1379, doi:10.1126/science.274.5291.1377.
[66]  Uysal, K.T.; Scheja, L.; Wiesbrock, S.M.; Bonner-Weir, S.; Hotamisligil, G.S. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 2000, 141, 3388–3396, doi:10.1210/en.141.9.3388.
[67]  Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassaya with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497, doi:10.1111/j.1399-3054.1962.tb08052.x.
[68]  Ho, H.A.; Lin, W.C.; Kitanaka, S.; Chang, C.T.; Wu, J.B. Analysis of bioactive triterpenes in Eriobotrya japonica Lindl. by high-performance liquid chromatography. J. Food Drug Anal. 2008, 16, 41–45.
[69]  Ho, H.Y.; Ling, K.Y.; Lin, W.C.; Kitanaka, S.; Wu, J.B. Regulation and improvement of triterpene formation in plant cultured cells of Eriobotrya japonica Lindl. J. Biosci. Bioeng. 2010, 11, 588–592.
[70]  Folch, J.; Lees, M.; Sloan-Stanley, G.H. A sample method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509.
[71]  Shen, Q.W.; Jones, C.S.; Kalchayanand, N.; Zhu, M.J.; Du, M. Effect of dietary alpha-lipoic acid on growth, Body composition, Muscle pH, and AMP-activated protein kinase phosphorylation in mice. J. Anim. Sci. 2005, 83, 2611–2617.
[72]  Laemmli, U.K. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685, doi:10.1038/227680a0.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133