全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electronically Tunable Sinusoidal Oscillator Circuit

DOI: 10.1155/2012/719376

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a novel electronically tunable third-order sinusoidal oscillator synthesized from a simple topology, employing current-mode blocks. The circuit is realized using the active element: Current Controlled Conveyors (CCCIIs) and grounded passive components. The new circuit enjoys the advantages of noninteractive electronically tunable frequency of oscillation, use of grounded passive components, and the simultaneous availability of three sinusoidal voltage outputs. Bias current generation scheme is given for the active elements used. The circuit exhibits good high frequency performance. Nonideal and parasitic study has also been carried out. Wide range frequency tuning is shown with the bias current. The proposed theory is verified through extensive PSPICE simulations using 0.25?μm CMOS process parameters. 1. Introduction The sinusoidal oscillators constitute an important building block which finds numerous applications in analogue signal processing. ?This electronic function provides standard test and carrier signals for communication and instrumentation circuits and also acts as the starting signal for generation of several other types of test signals. Similarly, the multiphase oscillators also find interesting applications in communication and instrumentation systems. For these highly precise processes, third-order sinusoidal oscillators are best suited because they enjoy lower harmonic distortions as compared to the second-order sinusoidal oscillators [1]. When the repertoire of technical literature is surveyed, many oscillator circuits are available based on one or the other type of active devices [2–4], but the third-order oscillators are not available in profusion. The third-order oscillators were first proposed in [5] using operational transconductance amplifiers (OTAs), but the dynamic range of the circuits based on OTAs is very limited [6]. Also, the frequency of oscillation cannot be controlled without affecting the condition of oscillation. The reported third-order oscillator in [7] provided four quadrature current outputs, all at high impedance, which makes it suitable for current-mode analogue signal processing. Two current-mode third-order sinusoidal oscillators are proposed in [8] which require three OTAs and three grounded capacitances. In the second oscillator circuit, the frequency of oscillation cannot be controlled without affecting the condition of oscillation. Also, for a large variation in the bias current, it gives a relatively less variation in the frequency of oscillation. The circuit proposed in [9] has limited

References

[1]  M. E. Van Valkenburg, Analog Filter Design, Holt Sounders International, 1987.
[2]  A. M. Soliman, “Novel oscillators using current and voltage followers,” Journal of the Franklin Institute, vol. 335, no. 6, pp. 997–1007, 1998.
[3]  A. M. Soliman, “Current mode CCII oscillators using grounded capacitors and resistors,” International Journal of Circuit Theory and Applications, vol. 26, no. 5, pp. 431–438, 1998.
[4]  I. A. Khan, P. Beg, and M. T. Ahmed, “First order current mode filters and multiphase sinusoidal oscillators using CMOS MOCCIIs,” Arabian Journal for Science and Engineering, vol. 32, no. 2, pp. 119–126, 2007.
[5]  P. Prommee and K. Dejhan, “An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier,” International Journal of Electronics, vol. 89, no. 5, pp. 365–379, 2002.
[6]  E. Sanchez-Sinencio, J. Ramirez-Angulo, B. Linares-Barranco, and A. Rodriguez-Vazquez, “Operational transconductance amplifier-based nonlinear function syntheses,” IEEE Journal of Solid-State Circuits, vol. 24, no. 6, pp. 1576–1586, 1989.
[7]  S. Maheshwari and I. A. Khan, “Current controlled third order quadrature oscillator,” IEE Proceedings, vol. 152, no. 6, pp. 605–607, 2005.
[8]  T. Tsukutani, Y. Sumi, and Y. Fukui, “Electronically controlled current-mode oscillators using MO-OTAs and grounded capacitors,” Frequenz, vol. 60, no. 11-12, pp. 220–223, 2006.
[9]  S. Maheshwari, “Quadrature oscillator using grounded components with current and voltage outputs,” IET Circuits, Devices and Systems, vol. 3, no. 4, pp. 153–160, 2009.
[10]  S. Lawanwisut and M. Siripruchyanun, “High output-impedance current-mode third-order quadrature oscillator based on CCCCTAs,” in Proceedings of the IEEE Region 10 International Conference (TENCON '09), November 2009.
[11]  S. Maheshwari, “Analogue signal processing applications using a new circuit topology,” IET Circuits, Devices and Systems, vol. 3, no. 3, pp. 106–115, 2009.
[12]  S. Maheshwari, “Current-mode third-order quadrature oscillator,” IET Circuits, Devices and Systems, vol. 4, no. 3, pp. 188–195, 2010.
[13]  J. W. Horng, H. Lee, and J. Y. Wu, “Electronically tunable third-order quadrature oscillator using CDTAs,” Radioengineering, vol. 19, no. 2, pp. 326–330, 2010.
[14]  S. Maheshwari, “High output impedance current-mode all-pass sections with two grounded passive components,” IET Circuits Devices and Systems, vol. 2, no. 2, pp. 234–242, 2008.
[15]  V. Biolková, J. Bajer, and D. Biolek, “Four-phase oscillators employing two active elements,” Radioengineering, vol. 20, no. 1, pp. 334–339, 2011.
[16]  P. Prommee, N. Sra-ium, and K. Dejhan, “High-frequency log-domain current-mode multiphase sinusoidal oscillator,” IET Circuits, Devices and Systems, vol. 4, no. 5, pp. 440–448, 2010.
[17]  A. Fabre, O. Saaid, F. Wiest, and C. Boucheron, “High frequency applications based on a new current controlled conveyor,” IEEE Transactions on Circuits and Systems I, vol. 43, no. 2, pp. 82–91, 1996.
[18]  M. T. Abuelma'atti and N. A. Tasadduq, “A novel single-input multiple-output current-mode current-controlled universal filter,” Microelectronics Journal, vol. 29, no. 11, pp. 901–905, 1998.
[19]  M. T. Abuelma'atti and M. A. Al-Qahtani, “A current-mode current-controlled current-conveyor-based analogue multiplier/divider,” International Journal of Electronics, vol. 85, no. 1, pp. 71–77, 1998.
[20]  T. Tsukutani, Y. Sumi, and N. Yabuki, “Versatile current-mode biquadratic circuit using only plus type CCCIIs and grounded capacitors,” International Journal of Electronics, vol. 94, no. 12, pp. 1147–1156, 2007.
[21]  C. Loescharatatamdee, W. Kiranon, W. Sangpisit, and W. Yadum, “Multiphase sinusoidal oscillator using translinear current conveyors and grounded passive components,” in Proceedings of the 33rd Southeastern Symposium on System Theory, pp. 59–563, 2001.
[22]  M. T. Abuelma'atti and R. H. Almaskati, “A new OTA-based active-C oscillator,” International Journal of Electronics, vol. 63, no. 3, pp. 331–334, 1987.
[23]  I. A. Khan, M. T. Ahmed, and N. Minhaj, “Tunable OTA-based multiphase sinusoidal oscillators,” International Journal of Electronics, vol. 72, no. 3, pp. 443–450, 1992.
[24]  P. Prommee, K. Angkeaw, M. Somdunyakanok, and K. Dejhan, “CMOS-based near zero-offset multiple inputs max-min circuits and its applications,” Analog Integrated Circuits and Signal Processing, vol. 61, no. 1, pp. 93–105, 2009.
[25]  A. S. Sedra and K. C. Smith, Microelectronics Circuits, Oxford University Press, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133