全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Water  2013 

A Combined Radio- and Stable-Isotopic Study of a California Coastal Aquifer System

DOI: 10.3390/w5020480

Keywords: radium, radon, groundwater, coastal aquifer, stable isotopes, residence times, desorption rate constant

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stable and radioactive tracers were utilized in concert to characterize geochemical processes in a complex coastal groundwater system and to provide constraints on the kinetics of rock/water interactions. Groundwater samples from wells within the Dominguez Gap region of Los Angeles County, California were analyzed for a suite of major cations (Na +, K +, Mg 2+, Ca 2+) and anions (Cl ?, SO 4 2?), silica, alkalinity, select trace elements (Ba, B, Sr), dissolved oxygen, stable isotopes of hydrogen (δD), oxygen (δ 18O), dissolved inorganic carbon (δ 13C DIC), and radioactive isotopes ( 3H, 222Rn and 223,224,226,228Ra). In the study area, groundwater may consist of a complex mixture of native groundwater, intruded seawater, non-native injected water, and oil-field brine water. In some wells, Cl ? concentrations attained seawater-like values and in conjunction with isotopically heavier δ 18O values, these tracers provide information on the extent of seawater intrusion and/or mixing with oil-field brines. Groundwater 3H above 1 tritium unit (TU) was observed only in a few select wells close to the Dominguez Gap area and most other well groundwater was aged pre-1952. Based on an initial 14C value for the study site of 90 percent modern carbon (pmc), groundwater age estimates likely extend beyond 20 kyr before present and confirm deep circulation of some native groundwater through multiple aquifers. Enriched values of groundwater δ 13C DIC in the absence of SO 4 2? imply enhanced anaerobic microbial methanogenesis. While secular equilibrium was observed for 234U/ 238U (activity ratios ~1) in host matrices, strong isotopic fractionation in these groundwater samples can be used to obtain information of adsorption/desorption kinetics. Calculated Ra residence times are short, and the associated desorption rate constant is about three orders of magnitude slower than that of the adsorption rate constant. Combined stable- and radio-isotopic results provide unique insights into aquifer characteristics, such as geochemical cycling, rock/water interactions, and subsurface transport and mixing.

References

[1]  Mendenhall, W.D. Development of Underground Waters in the Eastern Coastal Plain Region of Southern California. Water-Supply Paper 137; U.S. Geological Survey: Reston, VA, USA, 1905.
[2]  California Department of Water Resources. Planned Utilization of the Groundwater Basins of the Coastal Plain of Los Angeles Country, Appendix A: Ground Water Geology. Bulletin 104; California Department of Water Resources: Sacramento, CA, USA, 1961.
[3]  Los Angeles County Department of Public Works Web Page. Seawater Barriers.
[4]  Reichard, E.G.; Land, M.; Crawford, S.M.; Johnson, T.; Everett, R.R.; Kulshan, T.V.; Ponti, D.J.; Halford, K.L.; Johnson, T.A.; Paybins, K.S.; et al. Geohydrology, Geochemistry, and Ground-Water Simulation-Optimization of the Central and West Coast Basins, Los Angeles County, California. Water-Resources Investigations Report 03-4065; U.S. Geological Survey: Reston, VA, USA, 2003.
[5]  Land, M.; Everett, R.R.; Crawford, S.M. Geologic, Hydrologic, and Water-Quality Data from Multiple-Well Monitoring Sites in the Central and West Coast Basins, Los Angeles County, California. Open-File Report 01-277; U.S. Geological Survey: Reston, VA, USA, 2002.
[6]  Land, M.; Reichard, E.G.; Crawford, S.M.; Everett, R.R.; Newhouse, M.W.; Williams, C.F. Ground-Water Quality of Coastal Aquifer Systems in the West Coast Basin, Los Angeles County, California, 1999–2002. Scientific Investigations Report 2004–5067; U.S. Geological Survey: Reston, VA, USA, 2004.
[7]  Clark, I.; Fritz, P. Environmental Isotopes in Hydrogeology; Lewis Press: Boca Raton, FL, USA, 1997.
[8]  Kendall, C.; McDonnell, J.J. Isotope Tracers in Catchment Hydrology; Elsevier Science: Amsterdam, The Netherlands, 1998.
[9]  Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water, 4th. Water-Supply Paper 2254; U.S. Geological Survey: Reston, VA, USA, 1992.
[10]  Gat, J.R.; Gonfiantini, R. Stable Isotope Hydrology—Deuterium and Oxygen-18 in the Water Cycle; International Atomic Energy Agency: Vienna, Austria, 1981.
[11]  Kendall, C.; Mast, M.A.; Rice, K.C. Tracing Watershed Weathering Reactions with δ13C. In Water-Rock Interactions, Proceedings of the 7th International Symposium, Park City, UT, USA, 13–18 July 1993; Kharaka, Y.K., Maest, A.S., Eds.; Balkema: Rotterdam, The Netherlands, 1993; pp. 569–572.
[12]  Rozanski, K.; Araguas-Araguas, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation, in climate change in Continental Isotopic Records. Geophys. Monogr. 1993, 78, 1–36, doi:10.1029/GM078p0001.
[13]  Izbicki, J.A.; Danskin, W.R.; Mendez, G.O. Chemistry and Isotopic Composition of Groundwater along a Section near the Newmark Area, San Bernardino County, California. Water-Resources Investigations Report 97-4179; U.S. Geological Survey: Reston, VA, USA, 1998.
[14]  Szabo, Z.; Rice, D.E.; Plummer, L.N.; Busenberg, E.; Drenkard, S.; Schlosser, P. Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain. Water Resour. Res. 1996, 32, 1023–1038, doi:10.1029/96WR00068.
[15]  Krishnaswami, S.; Graustein, W.C.; Turekian, K.K.; Dowd, J.F. Radium, thorium, and radioactive lead isotopes in groundwaters: Application to the in-situ determination of adsorption-desorption rate constants and retardation factors. Water Resour. Res. 1982, 18, 1633–1675.
[16]  Krishnaswami, S.; Bhushan, R.; Baskaran, M. Radium isotopes and 222Rn in shallow brines, Kharaghoda (India). Chem. Geol. 1991, 87, 125–136.
[17]  Copenhaver, S.A.; Krishnaswami, S.; Turekian, K.K.; Shaw, H. 238U and 232Th series nuclides in groundwater from the J-13 well at the Nevada test site: Implications for ion retardation. Geophys. Res. Let. 1992, 19, 1383–1386, doi:10.1029/92GL01437.
[18]  Copenhaver, S.A.; Krishnaswami, S.; Turekian, K.K.; Epler, N.; Cochran, J.K. Retardation of 238U and 232Th decay chain radionuclides in Long Island and Connecticut aquifers. Geochim. Cosmochim. Acta 1993, 57, 597–603.
[19]  Hussain, N. Supply rates of natural U-Th series radionuclides from aquifer solids into groundwater. Geophys. Res. Let. 1995, 22, 1521–1524, doi:10.1029/95GL01006.
[20]  Ku, T.-L.; Luo, S.; Leslie, B.W.; Hammond, D.E. Decay-series disequilibria applied to the study of rock-water interaction and geothermal systems. In Uranium-series Disequilibrium; Ivanovich, M., Harmon, R.S., Eds.; Clarendon Press: Oxford, England, 1992; pp. 631–688.
[21]  Porcelli, D.; Swarzenski, P.W. The behavior of U- and Th-series nuclides in groundwater. Rev. Mineral. Geochem. 2003, 52, 317–361, doi:10.2113/0520317.
[22]  Olsen, C.R.; Cutshall, N.H.; Larsen, I.L. Pollutant-particle associations and dynamics in coastal marine environments: A review. Mar. Chem. 1982, 11, 501–533, doi:10.1016/0304-4203(82)90001-9.
[23]  Dickson, B.L. Radium isotopes in saline seepages, south-western Yilgarn, Western Australia. Geochim. Cosmochim. Acta 1985, 49, 361–368, doi:10.1016/0016-7037(85)90029-8.
[24]  Dickson, B.L.; Wheller, G.E. Uranium-series disequilibrium exploration geology. In Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences; Ivanovich, M., Harmon, R.S., Eds.; Clarendon Press: Oxford, UK, 1992; pp. 704–730.
[25]  Rama; Moore, W.S. Mechanisms of transport of U-Th series radioisotopes from solids into groundwater. Geochim. Cosmochim. Acta 1984, 48, 395–399, doi:10.1016/0016-7037(84)90261-8.
[26]  Poland, J.F.; Piper, A.N. Groundwater Geology of the Coastal Zone, Long Beach-Santa Ana Area, California. Water-Supply Paper 1109; U.S. Geological Survey: Reston, VA, USA, 1956.
[27]  Yerkes, R.F.; McCulloh, T.H.; Schoellhamer, J.E.; Vedder, J.G. Geology of the Los Angeles Basin, California: An Introduction. Professional Paper 420-A; U.S. Geological Survey: Reston, VA, USA, 1965.
[28]  Davis, T.L.; Namson, J.; Yerkes, R.F. A cross section of the Los Angeles area: Seismically active fold and thrust belt, the 1987 Whittier Narrows earthquake and earthquake hazard. Geophys. Res. 1989, 94, 9644–9664, doi:10.1029/JB094iB07p09644.
[29]  Wright, T.L. Structural geology and tectonic evolution of the Los Angeles Basin, California. In Active Margin Basins. Memoir 52; Biddle, K.T., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1991; pp. 35–134.
[30]  Ponti, D.J.; Ehman, K.D.; Edwards, B.D.; Tinsley, J.C., III; Hildenbrand, T.; Hillhouse, J.W.; Hanson, R.T.; McDougall, K.; Powell, C.L., II; Wan, E.; et al. A 3-Dimensional Model of Water-Bearing Sequences in the Dominguez Gap Region, Long Beach, California. Open-File Report 2007-1013; U.S. Geological Survey: Reston, VA, USA, 2007.
[31]  Nishikawa, T.; Siade, A.J.; Reichard, E.G.; Ponti, D.J.; Canales, A.G.; Johnson, T.A. Stratigraphic controls on seawater intrusion and implications for groundwater management, Dominguez Gap area of Los Angeles, California, USA. Hydrol. J. 2009, 17, 1699–1725.
[32]  Woodring, W.P.; Bramlette, M.N.; Kew, W.S.W. Geology and Paleontology of Pales Verdes Hills, California. Professional Paper 207; U.S. Geological Survey: Reston, VA, USA, 1946.
[33]  Epstein, S.; Mayeda, T. Variation of O18 content of water from natural sources. Geochim. Cosmochim. Acta 1953, 4, 213–224.
[34]  Coplen, T.B.; Wildman, J.D.; Chen, J. Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope ratio analysis. Anal. Chem. 1991, 63, 910–912, doi:10.1021/ac00009a014.
[35]  Burnett, W.C.; Taniguchi, M.; Oberdorfer, J.A. Assessment of submarine groundwater discharge into the coastal zone. J. Sea Res. 2001, 46, 109–116, doi:10.1016/S1385-1101(01)00075-2.
[36]  Burnett, W.C.; Dulaiova, H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J. Environ. Radio. 2003, 69, 21–25, doi:10.1016/S0265-931X(03)00084-5.
[37]  Swarzenski, P.W.; Orem, W.G.; McPherson, B.F.; Baskaran, M.; Wan, Y. Biogeochemical transport in the Loxahatchee river estuary: The role of submarine groundwater discharge. Mar. Chem. 2006, 101, 248–265, doi:10.1016/j.marchem.2006.03.007.
[38]  Swarzenski, P.W. U/Th series radionuclides as tracers of coastal groundwater. Chem. Rev. 2007, 107, 663–674.
[39]  Moore, W.S.; Arnold, R. Measurements of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. J. Geophys. Res. 1996, 101, 1321–1329, doi:10.1029/95JC03139.
[40]  Moore, W.S. Sampling 228Ra in the deep ocean. Deep Sea Res. Oceanogr. Abstr. 1976, 23, 647–651, doi:10.1016/0011-7471(76)90007-3.
[41]  Drever, J.I. The Geochemistry of Natural Waters, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1988.
[42]  Back, W.; Hanshaw, B.B.; Pyler, T.E.; Plummer, L.N.; Weide, E. Geochemical significance of groundwater discharge in Caleta Xel Ha, Quintana Roo, Mexico. Water Resour. Res. 1979, 15, 1521–1535, doi:10.1029/WR015i006p01521.
[43]  Ponti, D. U.S. Geological Survey: Menlo Park, CA, USA, 2012.
[44]  Izbicki, J.A. Source, Movement, and Age of Groundwater in a Coastal California Aquifer. Fact Sheet FS126-96; U.S. Geological Survey: Reston, VA, USA, 1996.
[45]  Michel, R.L. Tritium Deposition in the Continental United States, 1953–1989. Water-Resources Investigations Report 89-4072; U.S. Geological Survey: Reston, VA, USA, 1989.
[46]  Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1803.
[47]  Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468, doi:10.1111/j.2153-3490.1964.tb00181.x.
[48]  Williams, A.E.; Rodoni, D.P. Regional isotope effects and application to hydrologic investigations in southwestern California. Water Resour. Res. 1997, 33, 1721–1729, doi:10.1029/97WR01035.
[49]  Taylor, C.B. On the isotopic composition of dissolved inorganic carbon in rivers and shallow groundwater: A diagrammatic approach to process identification and a more realistic model of the open system. Radiocarbon 1997, 39, 251–268.
[50]  Claypool, G.E.; Kaplan, I.R. The origin and distribution of methane in marine sediments. In Natural Gases in Marine Sediments; Kaplan, I.R., Ed.; Springer: Berlin, Germany, 1974; pp. 99–139.
[51]  Grossman, E.L. Stable carbon isotopes as indicators of microbial activity in aquifers. In Manual of Environmental Microbiology; Hurst, C.J., Ed.; American Society for Microbiology: Washington, DC, USA, 1997; pp. 565–576.
[52]  Hellings, L.; van den Driessche, K.; Baeyens, W.; Keppens, E.; Dehairs, F. Origin and fate of dissolved inorganic carbon in interstitial waters of two freshwater intertidal areas: A case study of the Scheldt estuary, Belgium. Biogeochemistry 2000, 51, 141–160, doi:10.1023/A:1006472213070.
[53]  Landmeyer, J.E.; Vroblesky, D.A.; Chapelle, F.H. Stable carbon isotope evidence of biodegradation zonation in a shallow jet-fuel contaminated aquifer. Environ. Sci. Technol. 1996, 30, 1120–1128, doi:10.1021/es950325t.
[54]  Conrad, M.E.; Daley, P.F.; Fischer, M.L.; Buchanan, B.B.; Kashgarian, M. Combined 14C and δ13C monitoring of in situ biodegradation of petroleum hydrocarbons. Environ. Sci. Technol. 1997, 31, 1463–1469, doi:10.1021/es9607143.
[55]  Marfia, A.M.; Krishnamurthy, R.V.; Atekwana, E.A.; Panton, W.F. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geologic setting: A case study from Belize, Central America. Appl. Geochem. 2004, 19, 937–946, doi:10.1016/j.apgeochem.2003.10.013.
[56]  Nascimento, C.; Atekwana, E.A.; Krishnamurthy, K.V. Concentrations and isotope ratios of dissolved inorganic carbon in denitrifying environments. Geophys. Res. Lett. 1997, 24, 1511–1514.
[57]  Rosenthal, E.; Vinokurov, A.; Magaritz, M.; Moshkovitz, S. Anthropogenically induced salinization of groundwater: A case study from the coastal plain aquifer of Israel. Contamin. Hydrol. 1992, 11, 149–171, doi:10.1016/0169-7722(92)90038-G.
[58]  Plummer, L.N.; Parkhurst, D.L.; Thorstenson, D.C. Development of reaction models for ground-water systems. Geochim. Cosmochim. Acta 1983, 47, 665–686, doi:10.1016/0016-7037(83)90102-3.
[59]  Kigoshi, K. Alpha recoil 234Th: Dissolution in water and the 234U/238U disequilibrium in nature. Science 1971, 173, 47–48.
[60]  Tricca, A.; Wasserburg, G.J.; Porcelli, D.; Baskaran, M. The transport of U- and Th-series nuclides in a sandy confined aquifer. Geochim. Cosmochim Acta 2001, 65, 1187–1121, doi:10.1016/S0016-7037(00)00617-7.
[61]  Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. GSA Bull. 1961, 72, 175–192, doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.
[62]  Swarzenski, P.W.; Reich, C.D.; Spechler, R.M.; Kindinger, J.L.; Moore, W.S. Using multiple geochemical tracers to characterize the hydrogeology of the submarine spring off Crescent Beach, Florida. Chem. Geol. 2001, 179, 187–202, doi:10.1016/S0009-2541(01)00322-9.
[63]  Krishnaswami, S.; Seidemann, D.E. Comparative study of 222Rn, 40Ar, 39Ar, and 37Ar leakage from rocks and minerals—Implications for the role of nanopores in gas transport through natural silicates. Geochim. Cosmochim. Acta 1988, 52, 655–658, doi:10.1016/0016-7037(88)90327-4.
[64]  Rama; Moore, W.S. Submicronic porosity in common minerals and emanation of radon. Nucl. Geophys. 1990, 4, 467–473.
[65]  Davidson, M.R.; Dickson, B.L. A porous flow model for steady state transport of radium in groundwater. Water Resour. Res. 1986, 22, 34–44.
[66]  Martin, P.; Akber, R.A. Radium isotopes as indicators of adsorption–desorption interactions and barite formation in groundwater. J. Environ. Radioact. 1999, 46, 271–286, doi:10.1016/S0265-931X(98)00147-7.
[67]  Luo, S.; Ku, T.-L.; Roback, R.; Murrell, M.; McLing, T.L. In-situ radionuclide transport and preferential groundwater flows at INEEL (Idaho): Decay-series disequilibrium studies. Geochim. Cosmochim. Acta 2000, 64, 867–881, doi:10.1016/S0016-7037(99)00373-7.
[68]  Hammond, D.E.; Zukin, J.G.; Ku, T.-L. The kinetics of radioisotope exchange between brine and rock in a geothermal system. J. Geophys. Res. 1988, 93, 13175–13186, doi:10.1029/JB093iB11p13175.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133