全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Water  2013 

Sustainable Agro-Food Industrial Wastewater Treatment Using High Rate Anaerobic Process

DOI: 10.3390/w5010292

Keywords: anaerobic digestion, agro-food wastewater, biogas, high-rate systems, sustainable wastewater treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

This review article compiles the various advances made since 2008 in sustainable high-rate anaerobic technologies with emphasis on their performance enhancement when treating agro-food industrial wastewater. The review explores the generation and characteristics of different agro-food industrial wastewaters; the need for and the performance of high rate anaerobic reactors, such as an upflow anaerobic fixed bed reactor, an upflow anaerobic sludge blanket (UASB) reactor, hybrid systems etc.; operational challenges, mass transfer considerations, energy production estimation, toxicity, modeling, technology assessment and recommendations for successful operation

References

[1]  Rajagopal, R. Treatment of Agro-Food Industrial Wastewaters Using UAF and Hybrid UASB-UAF Reactors. Ph.D. Thesis, Indian Institute of Technology Roorkee, Roorkee, India, 2008.
[2]  Badshah, M.; Parawira, W.; Mattiasson, B. Anaerobic treatment of methanol condensate from pulp mill compared with anaerobic treatment of methanol using mesophilic UASB reactors. Bioresour. Technol. 2012, 125, 318–327.
[3]  Ganesh, R.; Rajagopal, R.; Torrijos, M.; Thanikal, J.M.; Ramanujam, R. Anaerobic treatment of winery wastewater in fixed bed reactors. Bioprocess Biosyst. Eng. 2010, 33, 619–628, doi:10.1007/s00449-009-0387-9.
[4]  Meksi, N.; Haddar, W.; Hammami, S.; Mhenni, M.F. Olive mill wastewater: A potential source of natural dyes for textile dyeing. Ind. Crops Prod. 2012, 40, 103–109, doi:10.1016/j.indcrop.2012.03.011.
[5]  MPOC (Malaysian Palm Oil Council). Available online: http://www.mpoc.org.my (accessed on 5 March 2013).
[6]  Fia, R.L.; Matos, A.T.; Borges, A.C.; Fia, R.; Cecon, P.R. Treatment of wastewater from coffee bean processing in anaerobic fixed bed reactors with different support materials: Performance and kinetic modeling. J. Environ. Manag. 2012, 108, 14–21, doi:10.1016/j.jenvman.2012.04.033.
[7]  Nieto, P.P.; Hidalgo, D.; Irusta, R.; Kraut, D. Biochemical methane potential (BMP) of agro-food wastes from the Cider Region (Spain). Water Sci. Technol. 2012, 66, 1842–1848, doi:10.2166/wst.2012.372.
[8]  Veronafiere (Ente Autonomo per le Fiere di Verona). Vinitaly analysis. Worldwide Wine: The Sector Scenario, Production, Consumption and Trade on a World Scale under the Magnifying Glass at Vinitaly. Available online: http://www.vinitaly.com/pdf/cartellaStampa/5gbCsVinitaly12_SituazioneMondoItalia_23marzo.pdf (accessed on 5 March 2013).
[9]  Un, U.T.; Altay, U.; Koparal, A.S.; Ogutveren, U.B. Complete treatment of olive mill wastewaters by electrooxidation. Chem. Eng. J. 2008, 139, 445–452, doi:10.1016/j.cej.2007.08.009.
[10]  Zhao, Z.-Q.; Xu, L.-L.; Li, W.-B.; Wang, M.-Z.; Shen, X.-L.; Mae, G.-S.; Shena, D.-S. Toxicity of three F-substituent aromatics in anaerobic systems. J. Chem. Technol. Biotechnol. 2012, 87, 1489–1496.
[11]  Wei, C.; Zhang, T.; Feng, C.; Wu, H.; Deng, Z.; Wu, C.; Lu, B. Treatment of food processing wastewater in a full-scale jet biogas internal loop anaerobic fluidized bed reactor. Biodegradation 2011, 22, 347–357, doi:10.1007/s10532-010-9405-5.
[12]  Rupani, P.F.; Singh, R.P.; Ibrahim, M.H.; Esa, N. Review of current palm oil mill effluent (POME) treatment methods: Vermicomposting as a sustainable practice. World Appl. Sci. J. 2010, 10, 1190–1201.
[13]  Alkaya, E.; Demirer, G.N. Anaerobic acidification of sugar-beet processing wastes: Effect of operational parameters. Biomass Bioenergy 2011, 35, 32–39.
[14]  Gotmare, M.; Dhoble, R.M.; Pittule, A.P. Biomethanation of dairy waste water through UASB at mesophilic temperature range. Int. J. Adv. Eng. Sci. Technol. 2011, 8, 1–9.
[15]  Ersahin, M.E.; Ozgun, H.; Dereli, R.K.; Ozturk, I. Anaerobic treatment of industrial effluents: An overview of applications. Waste Water—Treatment and Reutilization; InTech: New York, NY, USA, 2011. Available online: http://www.intechopen.com/books/waste-water-treatment-and-reutilization/anaerobic-treatment-of-industrial-effluents-an-overview-of-applications (accessed on 5 March 2013).
[16]  Senturk, E.; Ince, M.; Engin, O.G. Treatment efficiency and VFA composition of a thermophilic anaerobic contact reactor treating food industry wastewater. J. Hazard. Mater. 2010, 176, 843–848, doi:10.1016/j.jhazmat.2009.11.113.
[17]  Ersahin, M.E.; Dereli, R.K.; Ozgun, H.; Donmez, B.G.; Koyuncu, I.; Altinbas, M.; Ozturk, I. Source based characterization and pollution profile of a baker’s yeast industry. Clean-Soil Air Water 2011, 39, 543–548.
[18]  Passeggi, M.; Lopez, I.; Borzacconi, L. Integrated anaerobic treatment of dairy industrial wastewater and sludge. Water Sci. Technol. 2009, 59, 501–506, doi:10.2166/wst.2009.010.
[19]  Gon?alves, M.R.; Costa, J.C.; Marques, I.P.; Alves, M.M. Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater. Water Res. 2012, 46, 1684–1692, doi:10.1016/j.watres.2011.12.046.
[20]  Sun, L.; Wan, S.; Yu, Z.; Wang, Y.; Wang, S. Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor. Bioresour. Technol. 2012, 104, 280–288, doi:10.1016/j.biortech.2011.11.070.
[21]  Chong, S.; Sen, T.K.; Kayaalp, A.; Ang, H.M. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment—A State-of-the-art review. Water Res. 2012, 46, 3434–3470, doi:10.1016/j.watres.2012.03.066.
[22]  Rajagopal, R.; Ganesh, R.; Escudie, R.; Mehrotra, I.; Kumar, P.; Thanikal, J.V.; Torrijos, M. High rate anaerobic filters with floating supports for the treatment of effluents from small-scale agro-food industries. Desalin. Water Treat. 2009, 4, 183–190, doi:10.5004/dwt.2009.374.
[23]  Esparza, S.M.; Solís, M.C.; Herná, J.J. Anaerobic treatment of a medium strength industrial wastewater at low-temperature and short hydraulic retention time: A pilot-scale experience. Water Sci. Technol. 2011, 64, 1629–1635, doi:10.2166/wst.2011.741.
[24]  Shastry, S.; Nandy, T.; Wate, S.R.; Kaul, S.N. Hydrogenated vegetable oil industry wastewater treatment using UASB reactor system with recourse to energy recovery. Water Air Soil Pollut. 2010, 208, 323–333, doi:10.1007/s11270-009-0170-1.
[25]  Won, S.G.; Lau, A.K. Effects of key operational parameters on biohydrogen production via anaerobic fermentation in a sequencing batch reactor. Bioresour. Technol. 2011, 102, 6876–6883, doi:10.1016/j.biortech.2011.03.078.
[26]  Fuzzato, M.C.; Tallarico Adorno, M.A.; de Pinho, S.C.; Ribeiro, R.; Tommaso, G. Simplified mathematical model for an anaerobic sequencing batch biofilm reactor treating lipid-rich wastewater subject to rising organic loading rates. Environ. Eng. Sci. 2009, 26, 1197–1206.
[27]  Shanmugam, A.S.; Akunna, J.C. Comparing the performance of UASB and GRABBR treating low strength wastewaters. Water Sci. Technol. 2008, 58, 225–232, doi:10.2166/wst.2008.338.
[28]  Bialek, K.; Kumar, A.; Mahony, T.; Lens, P.N.L.; Flaherty, V.O. Microbial community structure and dynamics in anaerobic fluidized-bed and granular sludge-bed reactors: Influence of operational temperature and reactor configuration. Microb. Biotechnol. 2012, 5, 738–775, doi:10.1111/j.1751-7915.2012.00364.x.
[29]  Rajagopal, R.; Mehrotra, I.; Kumar, P.; Torrijos, M. Evaluation of a hybrid upflow anaerobic sludge-filter bed reactor: Effect of the proportion of packing medium on performance. Water Sci. Technol. 2010, 61, 1441–1450, doi:10.2166/wst.2010.081.
[30]  Gnansounou, E. Production and use of lignocellulosic bioethanol in Europe: Current situation and perspectives. Bioresour. Technol. 2010, 101, 4842–4850, doi:10.1016/j.biortech.2010.02.002.
[31]  Nkemka, V.N.; Murto, M. Biogas production from wheat straw in batch and UASB reactors: The roles of pretreatment and seaweed hydrolysate as a co-substrate. Bioresour. Technol. 2013, 128, 164–172, doi:10.1016/j.biortech.2012.10.117.
[32]  Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861, doi:10.1016/j.biortech.2009.11.093.
[33]  Bosco, F.; Chiampo, F. Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge Production of bioplastics using dairy residues. J. Biosci. Bioeng. 2010, 109, 418–421, doi:10.1016/j.jbiosc.2009.10.012.
[34]  Garcia, H.; Rico, C.; Garcia, P.A.; Rico, J.L. Flocculants effect in biomass retention in a UASB reactor treating dairy manure. Bioresour. Technol. 2008, 99, 6028–6036, doi:10.1016/j.biortech.2007.11.037.
[35]  Yu, Y.-C.; Gao, D.-W.; Tao, Y. Anammox start-up in sequencing batch biofilm reactors using different inoculating sludge. Appl. Microbiol. Biotechnol. 2012, doi:10.1007/s00253–012–4427-z.
[36]  Zhang, T.; Yan, Q.M.; Ye, L. Autotrophic biological nitrogen removal from saline wastewater under low DO. J. Chem. Technol. Biot. 2010, 85, 1340–1345, doi:10.1002/jctb.2438.
[37]  Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, H.; Buisman, C.J.N. Autotrophic nitrogen removal from low strength waste water at low temperature. Water Res. 2012, 46, 2187–2193, doi:10.1016/j.watres.2012.01.037.
[38]  Dosta, J.; Fernandez, I.; Vazquez-Padin, J.R.; Mosquera-Corral, A.; Campos, J.L.; Mata-Alvarez, J.; Mendez, R. Short- and long-term effects of temperature on the anammox process. J. Hazard. Mater. 2008, 154, 688–693, doi:10.1016/j.jhazmat.2007.10.082.
[39]  Lim, S.J.; Fox, P. A kinetic analysis and experimental validation of an integrated system of anaerobic filter and biological aerated filter. Bioresour. Technol. 2011, 102, 10371–10376, doi:10.1016/j.biortech.2011.09.005.
[40]  Nikolaeva, S.; Sanchez, E.; Borja, R.; Raposo, F.; Colmenarejo, M.F.; Montalvo, S.; Jiménez-Rodríguez, A.M. Kinetics of anaerobic degradation of screened dairy manure by upflow fixed bed digesters: Effect of natural zeolite addition. J. Environ. Sci. Health Part A Toxic/Hazard. Substan. Environ. Eng. 2009, 44, 146–154.
[41]  Koupaie, E.H.; Moghaddam, M.R.A.; Hashemi, S.H. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye Acid Red 18: Comparison of using two types of packing media. Bioresour. Technol. 2013, 127, 415–421.
[42]  Gómez-De Jesús, A.; Romano-Baez, F.J.; Leyva-Amezcua, L.; Juárez-Ramírez, C.; Ruiz-Ordaz, N.; Galíndez-Mayer, J. Biodegradation of 2,4,6-richlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation. J. Hazard. Mater. 2009, 161, 1140–1149, doi:10.1016/j.jhazmat.2008.04.077.
[43]  González, A.J.; Gallego, A.; Gemini, V.L.; Papalia, M.; Radice, M.; Gutkind, G.; Planes, E.; Korol, S.E. Degradation and detoxification of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by an indigenous Delftia sp. strain in batch and continuous systems. Int. Biodeter. Biodegr. 2012, 66, 8–13, doi:10.1016/j.ibiod.2011.09.010.
[44]  Satyawali, Y.; Pant, D.; Singh, A.; Srivastava, R.K. Treatment of rayon grade pulp drain effluent by upflow anaerobic fixed packed bed reactor (UAFPBR). J. Environ. Biol. 2009, 30, 667–672.
[45]  Ahn, J.-H. Nitrogen requirement for the mesophilic and thermophilic upflow anaerobic filters of a simulated paper mill wastewater. Korean J. Chem. Eng. 2008, 25, 1022–1025.
[46]  Deshannavar, U.B.; Basavaraj, R.K.; Naik, N.M. High rate digestion of dairy industry effluent by upflow anaerobic fixed-bed reactor. J. Chem. Pharma. Res. 2012, 4, 2895–2899.
[47]  Gao, F.; Zhang, H.; Yang, F.; Qiang, H.; Zhang, G. The contrast study of anammox-denitrifying system in two non-woven fixed-bed bioreactors (NFBR) treating different low C/N ratio sewage. Bioresour. Technol. 2012, 114, 54–61, doi:10.1016/j.biortech.2012.02.113.
[48]  Ji, G.; Wu, Y.; Wang, C. Analysis of microbial characterization in an upflow anaerobic sludge bed/biological aerated filter system for treating microcrystalline cellulose wastewater. Bioresour. Technol. 2012, 120, 60–69, doi:10.1016/j.biortech.2012.06.006.
[49]  Wang, Q.; Yang, Y.; Li, D.; Feng, C.; Zhang, Z. Treatment of ammonium-rich swine waste in modified porphyritic andesite fixed-bed anaerobic bioreactor. Bioresour. Technol. 2012, 111, 70–75, doi:10.1016/j.biortech.2012.01.182.
[50]  Bajaj, M.; Gallert, C.; Winter, J. Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor. Bioresour. Technol. 2008, 99, 8376–8381, doi:10.1016/j.biortech.2008.02.057.
[51]  Farhadian, M.; Duchez, D.; Vachelard, C.D.; Larroche, C. Monoaromatics removal from polluted water through bioreactors—A review. Water Res. 2008, 42, 1325–1341, doi:10.1016/j.watres.2007.10.021.
[52]  Mahmoud, N. High strength sewage treatment in a UASB reactor and an integrated UASB-digester system. Bioresour. Technol. 2008, 99, 7531–7538, doi:10.1016/j.biortech.2008.02.021.
[53]  Elangovan, C.; Sekar, A.S.S. Application of Upflow anaerobic sludge blanket (UASB) reactor process for the treatment of dairy wastewater—A review. Nat. Environ. Pollut. Technol. 2012, 11, 409–414.
[54]  Lew, B.; Lustig, I.; Beliavski, M.; Tarre, S.; Green, M. An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates. Bioresour. Technol. 2011, 102, 4921–4924, doi:10.1016/j.biortech.2011.01.030.
[55]  Li, J.; Hu, B.; Zheng, P.; Qaisar, M.; Mei, L. Filamentous granular sludge bulking in a laboratory scale UASB reactor. Bioresour. Technol. 2008, 99, 3431–3438, doi:10.1016/j.biortech.2007.08.005.
[56]  Huang, J.P.; Liu, L.; Shao, Y.M.; Song, H.J.; Wu, L.C.; Xiao, L. Study on cultivation and morphology of granular sludge in improved methanogenic UASB. Appl. Mechan. Mater. 2012, 209–211, 1152–1157.
[57]  Wongnoi, R.; Songkasiri, W.; Phalakornkule, C. Influence of a three-phase separator configuration on the performance of an upflow anaerobic sludge bed reactor treating wastewater from a fruit-canning factory. Water Environ. Res. 2007, 79, 199–207, doi:10.2175/106143006X111790.
[58]  Diez, V.; Ramos, C.; Cabezas, J.L. Treating wastewater with high oil and grease content using an anaerobic membrane bioreactor (AnMBR). Filtration and cleaning assays. Water Sci. Technol. 2012, 65, 1847–1853, doi:10.2166/wst.2012.852.
[59]  Kim, S.-H.; Shin, H.-S. Enhanced lipid degradation in an upflow anaerobic sludge blanket reactor by integration with an acidogenic reactor. Water Environ. Res. 2010, 82, 267–272, doi:10.2175/106143009X442899.
[60]  Erdirencelebi, D. Treatment of high-fat-containing dairy wastewater in a sequential UASBR system: Influence of recycle. J. Chem. Technol. Biotechnol. 2011, 86, 525–533, doi:10.1002/jctb.2546.
[61]  Najafpour, G.D.; Komeili, M.; Tajallipour, M.; Asadi, M. Bioconversion of cheese whey to methane in an upflow anaerobic packed bed bioreactor. Chem. Biochem. Eng. Q. 2010, 24, 111–117.
[62]  Yasar, A.; Tabinda, A.B. Anaerobic treatment of industrial wastewater by UASB reactor integrated with chemical oxidation processes: An overview. Pol. J. Environ. Stud. 2010, 19, 1051–1061.
[63]  Chen, X.-G.; Zheng, P.; Cai, J.; Qaisar, M. Bed expansion behavior and sensitivity analysis for super-high-rate anaerobic bioreactor. J. Zhejiang Univ. Sci. B. 2010, 11, 79–86.
[64]  Chen, X.G.; Zheng, P.; Qaisar, M.; Tang, C.J. Dynamic behavior and concentration distribution of granular sludge in a super-high-rate spiral anaerobic bioreactor. Bioresour. Technol. 2012, 111, 134–140, doi:10.1016/j.biortech.2012.02.044.
[65]  Yang, J.; Vedantam, S.; Spanjers, H.; Nopens, I.; van Lier, J.B. Analysis of mass transfer characteristics in a tubular membrane using CFD modeling. Water Res. 2012, 46, 4705–4712, doi:10.1016/j.watres.2012.06.028.
[66]  Feng, Y.; Lu, B.; Jiang, Y.; Chen, Y.; Shen, S. Anaerobic degradation of purified terephthalic acid wastewater using a novel, rapid mass-transfer circulating fluidized bed. Water Sci. Technol. 2012, 65, 1988–1993, doi:10.2166/wst.2012.098.
[67]  Wagner, R.C.; Regan, J.M.; Oh, S.E.; Zuo, Y.; Logan, B.E. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res. 2009, 43, 1480–1488, doi:10.1016/j.watres.2008.12.037.
[68]  Searmsirimongkol, P.; Rangsunvigit, P.; Leethochawalit, M.; Chavadej, S. Hydrogen production from alcohol distillery wastewater containing high potassium and sulfate using an anaerobic sequencing batch reactor. Int. J. Hydrog. Energ. 2011, 36, 12810–12821, doi:10.1016/j.ijhydene.2011.07.080.
[69]  Rajagopal, R.; Rousseau, P.; Bernet, N.; Béline, F. Combined anaerobic and activated sludge anoxic/oxic for piggery wastewater treatment. Bioresour. Technol. 2011, 102, 2185–2192, doi:10.1016/j.biortech.2010.09.112.
[70]  Labatut, R.A.; Angenent, L.T.; Scott, N.R. Biochemical methane potential and biodegradability of complex organic substrates. Bioresour. Technol. 2011, 102, 2255–2264, doi:10.1016/j.biortech.2010.10.035.
[71]  Ogejo, J.A.; Li, L. Enhancing biomethane production from flush dairy manure with turkey processing wastewater. Appl. Energ. 2010, 87, 3171–3177, doi:10.1016/j.apenergy.2010.04.020.
[72]  Rajagopal, R.; Lim, J.W.; Mao, Y.; Chen, C.L.; Wang, J.Y. Anaerobic co-digestion of source segregated brown water (feces-without-urine) and food waste: For Singapore context. Sci. Total Environ. 2013, 443, 877–886, doi:10.1016/j.scitotenv.2012.11.016.
[73]  Alberta Agriculture and Rural Development. Economic Feasibility of Anaerobic Digesters; Department of Agriculture and Rural Development: Edmonton, AB, Canada, 2008. Available online: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex12280 (accessed on 5 March 2013).
[74]  Esposito, G.; Frunzo, L.; Giordano, A.; Liotta, F.; Panico, A.; Pirozzi, F. Anaerobic co-digestion of organic wastes. Rev. Environ. Sci. Biotechnol. 2012, 11, 325–341.
[75]  Suwannoppadol, S.; Ho, G.; Cord-Ruwisch, R. Overcoming sodium toxicity by utilizing grass leaves as co-substrate during the start-up of batch thermophilic anaerobic digestion. Bioresour. Technol. 2012, 125, 188–192, doi:10.1016/j.biortech.2012.08.091.
[76]  Hierholtzer, A.; Akunna, J.C. Modelling sodium inhibition on the anaerobic digestion process. Water Sci. Technol. 2012, 66, 1565–1573, doi:10.2166/wst.2012.345.
[77]  Procházka, J.; Dolej?, P.; Máca, J.; Dohányos, M. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Appl. Microbiol. Biotechnol. 2012, 93, 439–447, doi:10.1007/s00253-011-3625-4.
[78]  Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064, doi:10.1016/j.biortech.2007.01.057.
[79]  Vyrides, I.; Santos, H.; Mingote, A.; Ray, M.J.; Stuckey, D.C. Are compatible solutes compatible with biological treatment of saline wastewater? Batch and continuous studies using submerged anaerobic membrane bioreactors (SAMBRs). Environ. Sci. Technol. 2010, 44, 7437–7442, doi:10.1021/es903981k.
[80]  Vyrides, I.; Stuckey, D.C. Adaptation of anaerobic biomass to saline conditions: Role of compatible solutes and extracellular polysaccharides. Enzym. Microb. Technol. 2009, 44, 46–51, doi:10.1016/j.enzmictec.2008.09.008.
[81]  Sasaki, K.; Morita, M.; Hirano, S.; Ohmura, N.; Igarashi, Y. Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles. Appl. Microbiol. Biotechnol. 2011, 90, 1555–1561, doi:10.1007/s00253-011-3215-5.
[82]  Abouelenien, F.; Nakashimada, Y.; Nishio, N. Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. J. Biosci. Bioeng. 2009, 107, 293–295, doi:10.1016/j.jbiosc.2008.10.009.
[83]  Resch, C.; W?rl, A.; Waltenberger, R.; Braun, R.; Kirchmayr, R. Enhancement options for the utilisation of nitrogen rich animal by-products in anaerobic digestion. Bioresour. Technol. 2011, 102, 2503–2510, doi:10.1016/j.biortech.2010.11.044.
[84]  Uludag-Demirer, S.; Demirer, G.N.; Frear, C.; Chen, S. Anaerobic digestion of dairy manure with enhanced ammonia removal. J. Environ. Manag. 2008, 86, 193–200, doi:10.1016/j.jenvman.2006.12.002.
[85]  Abdurahman, N.H.; Rosli, Y.M.; Azhari, N.H. Development of a membrane anaerobic system (MAS) for palm oil mill effluent (POME) treatment. Desalination 2011, 266, 208–212, doi:10.1016/j.desal.2010.08.028.
[86]  Wong, Y.S.; Kadir, M.O.A.B.; Teng, T.T. Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil mill effluent. Bioresour. Technol. 2009, 100, 4969–4975, doi:10.1016/j.biortech.2009.04.074.
[87]  Rajagopal, R.; Torrijos, M.; Kumar, P.; Mehrotra, I. Substrate removal kinetics in high-rate upflow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters. J. Environ. Manag. 2013, 116, 101–106, doi:10.1016/j.jenvman.2012.11.032.
[88]  Kaewsuk, J.; Thorasampan, W.; Thanuttamavong, M.; Seo, J.T. Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment. J. Environ. Manag. 2010, 91, 1161–1168, doi:10.1016/j.jenvman.2010.01.012.
[89]  Ramirez, I.; Volcke, E.I.P.; Rajagopal, R.; Steyer, J.P. Application of ADM1 towards modelling biodiversity in anaerobic digestion. Water Res. 2009, 43, 2787–2800, doi:10.1016/j.watres.2009.03.034.
[90]  Girault, R.; Bridoux, G.; Nauleau, F.; Poullain, C.; Buffet, J.; Steyer, J.-P.; Sadowski, A.G.; Béline, F. A waste characterisation procedure for ADM1 implementation based on degradation kinetics. Water Res. 2012, 46, 4099–4110, doi:10.1016/j.watres.2012.04.028.
[91]  Lee, M.-Y.; Suh, C.-W.; Ahn, Y.-T.; Shin, H.-S. Variation of ADM1 by using temperature-phased anaerobic digestion (TPAD) operation. Bioresour. Technol. 2009, 100, 2816–2822, doi:10.1016/j.biortech.2008.12.025.
[92]  Boubaker, F.; Ridha, B.C. Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1). Bioresour. Technol. 2008, 99, 6565–6577.
[93]  Farhan, M.H. High Rate Anaerobic Digester Systems for Brewery Wastewater Treatment and Electricity Generation: Engineering Design Factors and Cost Benefit Analysis. In Proceedings of The World Brewing Congress, Oregon Convention Centre, Portland, OR, USA, 28 July–1 August 2012; Available online: http://www.worldbrewingcongress.org/2012/Abstracts/AbstractsDetail.cfm?AbstractID=318 (accessed on 5 March 2013).
[94]  Gebrezgabher, S.A.; Meuwissen, M.P.M.; Prins, B.A.M.; Lansink, A.G.J.M.O. Economic analysis of anaerobic digestion—A case of green power biogas plant in The Netherlands. NJAS Wagening. J. Life Sci. 2010, 57, 109–115.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133