The pronounced increase in the cycling and deposition of biologically reactive dissolved inorganic nitrogen (DIN) over large areas globally not only cause increased concentrations of DIN in surface waters, but it will also affect nutrient ratios in rivers, lakes and coastal areas. This review addresses the flux and fate of DIN, focusing NO 3 in lakes of boreal and alpine catchments. Not only DIN-deposition, but also catchment properties strongly affect the concentrations of NO 3 in lakes, as well as NO 3:total P (TP) ratios. This ratio displays an extreme variability, and does also serve as an indicator of shift between N and P-limitation of aquatic autotrophs. A high share of forests and bogs in the catchment generally decreases NO 3:total P ratios, while alpine and subalpine catchments with sparse vegetation cover may have high NO 3:total P ratios, especially in regions with high DIN-deposition. Several empirical and experimental studies indicate a shift from an initial N to P-limitation, but for N-limited lakes, an increased growth of phytoplankton, periphytes and macrophytes may be accredited to elevated inputs of DIN. An intensified P-limitation may also be a consequence of elevated DIN-deposition. This P-limitation may again yield higher C:P-ratios in autotrophs with negative impacts on grazers and higher trophic levels.
References
[1]
Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The evolution and future of earth’s nitrogen cycle. Science 2010, 333, 192–196.
[2]
Vitousek, P.M.; Aber, J.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, G.D. Human alterations of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 1997, 7, 737–750.
[3]
Galloway, J.N.; Cowling, E.B. Reactive nitrogen and the world: 200 years of change. AMBIO 2002, 31, 64–71.
[4]
Schindler, D.W.; Curtis, P.J.; Bayley, S.E.; Parker, B.; Beaty, K.G.; Stainton, M.P. Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 1997, 36, 9–28, doi:10.1023/A:1005792014547.
[5]
Elser, J.J.; Bracken, M.E.S.; Cleland, E.S.; Gruner, D.S.; Harpole, S.E.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142.
[6]
Brimblecombe, P.; Steadman, D.H. Historical evidence for a dramatic increase in the nitrate component of acid rain. Nature 1982, 298, 460–461, doi:10.1038/298460a0.
[7]
Grennfelt, P.; Hultberg, H. Effects of nitrogen deposition on the acidification of terrestrial and aquatic ecosystems. Water Air Soil Poll. 1986, 30, 945–963, doi:10.1007/BF00303359.
Asner, G.P.; Townsend, A.R.; William, J.; Riley, W.J.; Matson, P.A.; Neff, J.C.; Cleveland, C.C. Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition. Biogeochemistry 2001, 54, 1–39.
[10]
Dise, N.B.; Wright, R.F. Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecol. Mngmt. 1995, 71, 153–161.
[11]
Henriksen, A.; Brakke, D.F. Increasing contributions of nitrogen to the acidity of surface waters in Norway. Water Air Soil Poll. 1988, 42, 183–202.
[12]
Stoddard, J.L. Long Term Changes in Watershed Retention of Nitrogen; Its Causes and Aquatic Consequences. In Environmental Chemistry of Lakes and Reservoirs; Advances in Chemistry Series No. 237; Baker, L.A., Ed.; American Chemical Society: Washington, DC, USA, 1994.
[13]
Henriksen, A.; Skjelkv?le, B.L.; Mannio, J.; Wilander, A.; Harriman, R.; Curtis, C.; Jensen, J.P.; Fjeld, E.; Moiseenko, T. Northern European Lake Survey—1995. Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales. AMBIO 1998, 27, 80–91.
[14]
Jassby, A.D.; Goldman, C.R.; Reuter, J.E. Long-term change in Lake Tahoe (California-Nevada, U.S.A) and its relation to atmospheric deposition of algal nutrients. Arch. Hydrobiol. 1995, 135, 1–21.
[15]
Hessen, D.O.; Hindar, A.; Holtan, G. The significance of nitrogen runoff for eutrophication of freshwater and marine recipients. AMBIO 1997, 26, 321–325.
[16]
Bergstr?m, A-K.; Blomqvist, P.; Jansson, M. Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnol. Oceanogr. 2005, 50, 987–994, doi:10.4319/lo.2005.50.3.0987.
[17]
Elser, J.J.; Andersen, T.; Baron, J.L.; Bergstr?m, A.K.; Jansson, M.; Kyle, M.; Nydick, K.R.; Steger, L.; Hessen, D.O. Shifts in lake N:P stoichiometry are driven by atmospheric nitrogen deposition. Science 2009, 326, 835–837, doi:10.1126/science.1176199.
[18]
Elser, J.J.; Peace, A.L.; Kyle, M.; Wojdewodzik, M.; McCrackin, M.L.; Andersen, T.; Hessen, D.O. Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton. Ecol. Lett. 2010, 13, 1256–1261, doi:10.1111/j.1461-0248.2010.01519.x.
[19]
Hessen, D.O.; Andersen, T.; Larsen, S.; Skjelkv?le, B.L.; de Wit, H.A. Nitrogen deposition, catchment productivity, and climate as determinants of lake stoichiometry. Limnol. Oceanogr. 2009, 54, 2520–2528.
[20]
Hagedorn, F.; Spinnler, D.; Siegwolf, R. Increased N deposition retards mineralization of old soil organic matter. Soil Biol. Biochem. 2003, 35, 1538–1692.
[21]
Lenton, T.M.; Watson, A.J. Redfield revisited: 1. Regulation of nitrate, phosphate and oxygen in the ocean. Glob. Biogeoch. Cycl. 2000, 14, 225–248.
[22]
Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297, doi:10.4319/lo.2009.54.6_part_2.2283.
Howart, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, R.; Caraco, N.; Jordan, T.; et al. Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochem 1996, 35, 75–139, doi:10.1007/BF02179825.
[25]
Kaste, ?.; Henriksen, A.; Hindar, A. Retention of atmospherically-derived nitrogen in subcatchments of River Bjerkreim in southwestern Norway. AMBIO 1997, 26, 296–303.
[26]
McCrackin, M.L.; Michelle, L.; Elser, J.J. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes. Ecology 2010, 91, 528–539, doi:10.1890/08-2210.1.
[27]
Murphy, C.A.; Thompson, P.L.; Vinebrooke, R.D. Assessing the sensitivity of alpine lakes and ponds to nitrogen deposition in the Canadian Rocky Mountains. Hydrobiologia 2010, 648, 83–90, doi:10.1007/s10750-010-0146-6.
[28]
Humborg, C.; Smedberg, E.; Blomqvist, S.; M?rth, C.-M.; Brink, J.; Rahm, L.; Danielsson, ?.; Sahlberg, J. Nutrient variations in boreal and subarctic Swedish rivers: Landscape control of land-sea fluxes. Limnol. Oceanogr. 2004, 49, 1871–1883, doi:10.4319/lo.2004.49.5.1871.
[29]
Dillon, P.J.; Molot, L.A. Long-term trends in catchment export and lake retention of dissolved organic carbon, dissolved organic nitrogen, total iron and total phosphorus: The Dorset, Ontario, study, 1978–1998. J. Geophys. Res. 2005, 110, 1–7.
[30]
Kortelainen, P.; Mattsson, T.; Finer, L.; Ahtiainen, M.; Saukkonen, S.; Sallantaus, T. Controls on the export of C, N, P and Fe from undisturbed boreal catchments in Finland. Aquat.Sci. 2006, 68, 453–468.
[31]
Fisher, D.W.; Gambell, A.W.; Likens, G.E.; Bormann, F.H. Atmospheric contribution to water quality of streams in Hubbard Brook experimental forest, New Hampshire. Wat. Res. Res. 1966, 4, 1115–1126.
[32]
Hessen, D.O. Catchment properties and the transport of major elements to estuaries. Adv. Ecol. Res. 1999, 29, 1–41.
[33]
Kopácek, J.; Procháková, L.; Stuchlík, E.; Bazka, P. The nitrogen-phosphorus relationship in mountain lakes: Influence of atmospheric input, watershed, and pH. Limnol. Oceanogr. 1995, 40, 930–937.
Bergstr?m, A.-K. The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N-deposition. Aquat. Sci. 2010, 72, 277–281, doi:10.1007/s00027-010-0132-0.
[36]
Elser, J.J.; Marzolf, E.R.; Goldman, C.R. Phosphorus and nitrogen limitationof phytoplankton growth in freshwaters of North America: A review and critique of experimental enrichments. Can. J. Fish. Aquat. Sci. 1990, 47, 1468–1477.
Crowley, K.F.; McNeil, B.E.; Lovett, G.M.; Canham, G.M.; Driscoll, C.T.; Rustad, L.E.; Denny, E.; Hallett, R.A.; Arthus, M.A.; Boggs, J.L.; et al. Do nitrogen limitation patterns shift from nitrogen towards phosphorus with increasing nitrogen deposition across the northeastern United States. Ecosystems 2012, 15, 940–957, doi:10.1007/s10021-012-9550-2.
[39]
Interlandi, S.J.; Kilham, S.S. Assessing the effects of nitrogen deposition on mountain waters: A study of phytoplankton community dynamics. Water Sci. Technol. 1998, 38, 139–146.
[40]
Bergstr?m, A.-K.; Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Change Biol. 2006, 12, 635–643, doi:10.1111/j.1365-2486.2006.01129.x.
[41]
Lewis, W.W.; Wurtsbaugh, W.A. Control of lacustrine phytoplankton by nutrients: Erosion of the phosphorus paradigm. Int. Rev. Hydrobiol. 2008, 93, 446–465, doi:10.1002/iroh.200811065.
[42]
Sterner, R.W. On the phosphorus limitation paradigm for lakes. Int. Rev. Hydrobiol. 2008, 93, 433–445, doi:10.1002/iroh.200811068.
[43]
Schindler, D.W. The dilemma of controlling cultural eutrophication of lakes. PNAS 2012, 279, 4322–4333.
[44]
Liess, A.; Drakare, S.; Kahlert, M. Atmospheric nitrogen-deposition may intensify phosphorus limitation of shallow epilithic periphyton in unproductive lakes. Freshw. Biol. 2009, 54, 1759–1773, doi:10.1111/j.1365-2427.2009.02222.x.
[45]
Duarte, C.M. Nutrient concentrations of aquatic plants—Patterns across species. Limnol. Oceanogr. 1992, 37, 882–889, doi:10.4319/lo.1992.37.4.0882.
[46]
Tracy, M.; Montante, J.M.; Allenson, T.E.; Hough, R.A. Long-term responses of aquatic macrophyte diversity and community structure to variation in nitrogen loading. Aquat. Bot. 2003, 77, 43–52, doi:10.1016/S0304-3770(03)00071-8.
[47]
Schneider, S.; Moe, T.F.; Hessen, D.O.; Kaste, ?. Juncus. bulbosus nuisance growth in oligotrophic freshwater ecosystems: Different triggers for the same phenomenon in rivers and lakes? Aquat. Bot. 2013, 104, 15–24.
[48]
Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: New Jersey, UK, 2002.
[49]
Moran, N.; Hamilton, W.D. Low nutritive quality as defense against herbivores. J. Theor. Biol. 1980, 86, 247–225, doi:10.1016/0022-5193(80)90004-1.
[50]
Sterner, R.W.; Hessen, D.O. Algal nutrient limitation and the nutrition of aquatic herbivores. Ann. Rev. Ecol. Syst. 1994, 25, 1–2.
[51]
Frost, P.C.; Elser, J.J. Growth responses of littoral mayflies to the phosphorus content of their food. Ecol. Lett. 2002, 5, 232–240, doi:10.1046/j.1461-0248.2002.00307.x.
[52]
Liess, A.; Hillebrand, H. Stoichiometric variation in C:N, C:P, and N:P ratios of littoral benthic invertebrates. J. North. Am. Benth. Soc. 2005, 24, 256–269, doi:10.1899/04-015.1.
[53]
Stelzer, R.S.; Lamberti, G.A. Ecological stoichiometry in running waters: Periphyton chemical composition and snail growth. Ecology 2002, 83, 1039–1051, doi:10.1890/0012-9658(2002)083[1039:ESIRWP]2.0.CO;2.
[54]
Larsen, S.; Andersen, T.; Hessen, D.O. Severe impacts of climate change on organic carbon in lakes. Glob. Change Biol. 2011, 17, 1186–1192, doi:10.1111/j.1365-2486.2010.02257.x.