全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamin-dependent NMDAR endocytosis during LTD and its dependence on synaptic state

DOI: 10.1186/1471-2202-6-48

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we show that depression of synaptic transmission mediated by NMDA receptors displays a state-dependence in its plasticity; NMDA receptors are resistant to activity-induced changes at silent and recently-silent synapses. Once synapses transition to the active state however, NMDA receptors become fully 'plastic'. This state-dependence is identical to that shown by the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor. Furthermore, the down-regulation of NMDAR-mediated responses during synaptic depression is prevented by disruption of dynamin-dependent endocytosis.NMDA receptor-mediated synaptic responses are plastic in a state-dependent manner. Depending on the plasticity state in which a synapse currently resides, NMDA receptors will either be available or unavailable for down-regulation. The mechanism underlying the down-regulation of NMDA receptor-mediated synaptic responses is endocytosis of the NMDA receptor. Other potential mechanisms, such as receptor diffusion along the plane of the membrane, or changes in the activity of the channel are not supported. The mechanisms of AMPA receptor and NMDA receptor endocytosis appear to be tightly coupled, as both are either available or unavailable for endocytosis in the same synaptic states. Endocytosis of NMDA receptors would serve as a potent mechanism for metaplasticity. Such state-dependent regulation of NMDAR endocytosis will provide fundamental control over downstream NMDA receptor-dependent plasticity of neuronal circuitry.The circuit and neuro-cellular mechanisms that underlie learning and memory have occupied the interest of scientists for many decades. The most compelling and widely accepted theories of learning and memory hold that memories are stored at synapses. More specifically, memories are formed and stored by persistent increases and/or decreases in the amplitude of postsynaptic potentials evoked during synaptic transmission across excitatory glutamatergic synapses. The most widel

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133