|
Characterization of novel alternative splicing sites in human telomerase reverse transcriptase (hTERT): analysis of expression and mutual correlation in mRNA isoforms from normal and tumour tissuesAbstract: By establishing cDNA-clone panels from lung and colon tissues, we could map hTERT clones individually for differences in DNA sequence. This made possible the identification of novel alternatively spliced sites as well as analysis of their frequency and mutual correlation in mRNA isoforms. Ten different alternatively spliced sites were detected, of which six were novel sites resulting from alternative splicing of intron 2 or 14. The majority of hTERT cDNA clones from normal and tumour lung and colon tissues encoded truncated proteins ending close after exon 2 or 6.The increased complexity in telomerase expression revealed here has implications for our understanding of telomerase regulation and for the choice of suitable methods for addressing hTERT expression.The ends of eukaryotic chromosomes are usually capped by telomeres which consist of repeated copies of a short DNA sequence and several associated proteins [reviewed in [1]]. The telomeres protect the chromosomes from damage and degradation and from being fused together by DNA repair mechanisms and are essential for genomic integrity and cell viability. Since the conventional DNA replication process is unable to completely synthesize chromosome ends, proliferating cells lacking de novo synthesis of telomeric DNA will eventually lose their telomeres and enter a growth-arrest state called replicative senescence. The continued proliferation of eukaryotic cells is ensured by the telomerase enzyme which maintains and synthesizes telomeric repeats on to chromosome ends [2,3]. In humans, telomerase activity has been detected in many highly proliferative cells and tissues, such as early stage embryos, reproductive tissues in testis and ovary, stem cells, fibroblasts and activated lymphocytes [reviewed in [4]]. Most somatic tissues contain undetectable levels of telomerase activity, but restoration of telomerase activity is required for immortalization and continued growth of cancer cells. Thus, regulation of telomerase
|