全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hypoxia induces telomerase reverse transcriptase (TERT) gene expression in non-tumor fish tissues in vivo: the marine medaka (Oryzias melastigma) model

DOI: 10.1186/1471-2199-7-27

Full-Text   Cite this paper   Add to My Lib

Abstract:

The adult marine medaka (Oryzias melastigma) was employed as a model fish in this study. We have cloned and characterized a 3261-bp full-length TERT cDNA, omTERT, which encodes a protein of 1086 amino acids. It contains all of the functional motifs that are conserved in other vertebrate TERTs. Motif E is the most highly conserved showing 90.9–100% overall identity among the fish TERTs and 63.6% overall identity among vertebrates. Analysis of the 5'-flanking sequence of the omTERT gene identified two HRE (hypoxia-responsive element; nt. – 283 and – 892) cores. Overexpression of the HIF-1α induced omTERT promoter activity as demonstrated using transient transfection assays. The omTERT gene is ubiquitously expressed in fish under normoxia, albeit at varying levels, where highest expression was observed in gonads and the lowest in liver. In vivo expression of omTERT was significantly upregulated in testis and liver in response to hypoxia (at 96 h and 48 h, respectively), where concomitant induction of the omHIF-1α and erythropoietin (omEpo) genes was also observed. In situ hybridization analysis showed that hypoxic induction of omTERT mRNA was clearly evident in hepatocytes in the caudal region of liver and in spermatogonia-containing cysts in testis.This study demonstrates for the first time, hypoxic regulation of TERT expression in vivo in a whole fish system. Our findings support the notion that hypoxia upregulates omTERT expression via omHIF-1 in non-neoplastic fish liver and testis in vivo. Overall, the structure and regulation of the TERT gene is highly conserved in vertebrates from fish to human.The enzyme telomerase, comprising a telomerase reverse transcriptase (TERT) subunit and a RNA subunit (TR), is ubiquitous from unicellular protozoa to mammals [1,2]. In humans, transcriptional regulation of hTERT is the major mechanism of telomerase activation. Hypoxia responsive elements (HREs), to which the hypoxia-inducible factor 1 (HIF-1) binds to regulate transcript

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133