We present a novel pneumatic actuation system for generation of liquid metal droplets according to the so-called StarJet method. In contrast to our previous work, the performance of the device has been significantly improved: the maximum droplet generation frequency in continuous mode has been increased to f max = 11 kHz (formerly f max = 4 kHz). In addition, the droplet diameter has been reduced to 60 μm. Therefore, a new fabrication process for the silicon nozzle chips has been developed enabling the production of smaller nozzle chips with higher surface quality. The size of the metal reservoir has been increased to hold up to 22 mL liquid metal and the performance and durability of the actuator has been improved by using stainless steel and a second pneumatic connection to control the sheath flow. Experimental results are presented regarding the characterization of the droplet generation, as well as printed metal structures.
References
[1]
Schuhmacher, D.; Scheithauer, H.; Alavi, M.; Niekrawietz, R.; Hei, B.; Zengerle, R.; Koltay, P. Erzeugung von Mikrotropfen aus flüssigem L?tzinn mittels einer hochparallelen und kontaktlosen Drucktechnik. In Proceedings of MikroSystemTechnik—KONGRESS 2007, Dresden, Germany, October 2007; pp. 357–360.
[2]
Ho-Young, S.; Jae-Woong, N.; Kyung-Wook, P. Formation of Pb/63Sn solder bumps using a solder droplet jetting method. IEEE Trans. Electron. Packag. Manuf. 2005, 28, 274–281, doi:10.1109/TEPM.2005.853068.
[3]
Ession, M.; Keicher, D.M.; Miller, W.D. Manufacturing electronic components in a direct-write process using precision spraying and laser irradiation. Patent EP1179288, 2000.
[4]
Cao, W.; Yoshinari, M. Freeform fabrication of aluminum parts by direct deposition of molten aluminum. J. Mater. Process. 2006, 173, 209–212.
[5]
Lee, T.-M.; Kang, T.G.; Yang, J.-S.; Jo, J.-D.; Kim, K.-Y.; Choi, B.-O.; Kim, D.-S. 3D metal microstrcture fabrication using a molten metal DoD inkjet system. In Proceedings of the 14th International Solid-State Sensors, Actuators and Microsystems Conference, Lyons, France, June 2007; pp. 1637–1640.
[6]
Orme, M.; Liu, Q.; Fischer, J. Mono-disperse aluminum droplet generation and deposition for net-form manufacturing of structural components. In Proceedings of the 8th International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, USA, July 2000.
[7]
Irlinger, F.; Harnisch, J. Hochtemperatur-Tropfenerzeugung mittels eines elektromagnetischen Drop-on-Demand-Systems. In Proceedings ofMikrosystemtechnik Kongress 2005, Munich, Germany, October 2005.
[8]
Kessling, O.S.; Werner, K.; Irlinger, F.; Lüth, T.C. Indium solder printing for low temperature applications and modeling of a droplet generator. In Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, Tianjin, China, December 2010.
[9]
Yamaguchi, K.; Sakai, K.; Yamanaka, T.; Hirayama, T. Generation of three-dimensional micro structure using metal jet. Precis.Eng. 2000, 24, 2–8, doi:10.1016/S0141-6359(99)00015-X.
[10]
Priest, J.J.; Elizabeth Smith, C., Jr. Liquid metal jetting technology: Application issues for hybrid technology. Int. J. Microcircuits Elecron. Packag. 1994, 17, 219–227.
[11]
Schuhmacher, D.; Niekrawietz, R.; Scheithauer, H.; de Heij, B.; Alavi, M.; Zengerle, R.; Koltay, P. Production of solder microdroplets using a highly parallel and contact-free printing method. In Proceedings of the IEEE 20th International Conference on Micro Electro Mechanical Systems, Kobe, Japan, January 2007; pp. 357–360.
[12]
Kübler, M.; Lemmermeyer, B.; Wehl, W.; Wild, J. Ein akustisches Antriebssystem für einen Drop-on-Demand-Druckkopf. Horizonte 2006, 28, S3–S9.
[13]
Orme, M.; Courter, J.; Liu, Q.; Zhu, J.; Smith, R. Charged molten metal droplet deposition as a direct write technology. In Proceedings of the MRS 2000 Spring Meeting, SanFrancisco, CA, USA, April 2000.
[14]
Orme, M.; Smith, R.F. Enhanced aluminum properties by means of precise droplet deposition. J. Manuf. Sci. Eng. 2000, 122, doi:10.1115/1.1285914.
[15]
Tropmann, A.; Lass, N.; Paust, N.; Metz, T.; Ziegler, C.; Zengerle, R.; Koltay, P. Pneumatic dispensing of nano- to picoliter droplets of liquid metal with the StarJet method for rapid prototyping of metal microstructures. Microfluid.Nanofluid. 2011, 12, 75–84.
[16]
Lass, N.; Tropmann, A.; Metz, T.; Zengerle, R.; Koltay, P. 3D Rapid-Prototyping durch Drucken von flüssigem Metall unter Verwendung der StarJet. In Proceedings of Mikrosytemtechnik Congress 2012, Darmstadt, Germany, October 2011.
[17]
Riegger, L. Back-end Processing in Lab-on-a-Chip Fabrication. Ph.D. Thesis, University of Freiburg, Freiburg, Germany, Suedwestdeutscher Verlag für Hochschulschriften, 2010.
[18]
Rangelow, I.W. Critical tasks in high aspect ratio silicon dry etching for microelectromechanical systems. J. Vac. Sci. Technol. A 2003, 21, doi:10.1116/1.1580488.
[19]
McNie, M.; Pickering, C.; Rickard, A.L.; Young, I.M.; Hopkins, J.; Ashraf, H.; McAuley, S.A.; Nicholls, G.; Barnett, R.; Roozeboom, F.; et al. Performance enhancement and evaluation of deep dry etching on a production cluster platform. Proc. SPIE Micromach. Microfabr. Process Technol. VIII 2003, 4979, doi:10.1117/12.478242.
[20]
Aziz, S.D.; Chandra, S. Impact, recoil and splashing of molten metal droplets. Int. J. Heat Mass Transf. 2000, 43, 2841–2857, doi:10.1016/S0017-9310(99)00350-6.