We present an active droplet merging device, which can merge various sizes of micro droplets in different numbers by using pneumatically controlled horizontal PDMS microvalves. The merging part consists of a main and side channels separated by a pillar array. The pillar array structure is contained within a microfuidic channel. The function of the pillar array provides a bypass path to the continuous flow (oil) inside the merging chamber. Droplets are successfully generated within the channel and achieve merging by controlling the selective different numbers and diameters of droplets through varying the flow resistance of main and side channel. In the merging chamber, a droplet will enter and slow down its movement. It will wait and then merge with the sequential droplets. These experiments demonstrate that such a merging device can controllably select and adjust the distance between the different adjacent micro droplets without any generation of sister droplets in the side channel. The device has no desynchronization problems. Thus, it can be applied for efficiently mixing the droplets in various diameters and numbers without changing the structure of the merging chamber. Hence, this device can be a more effective choice when applying microfluidics to chemical and biological applications.
References
[1]
Song, H.; Chen, D.L.; Ismagilov, R.F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 2006, 45, 7336–7356, doi:10.1002/anie.200601554.
[2]
Niu, X.; Edel, J.B. Geometrically mediated droplet merging in microchannels. In Proceedings of the 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences, San Diego, CA, USA, October 2008; pp. 1423–1425.
[3]
Kim, S.J.; Song, Y.-A.; Skipper, P.L.; Han, J. Electrohydrodynamic generation and delivery of monodisperse pico-liter droplets using the PDMS microchip. Anal. Chem. 2006, 78, 8011–8019.
[4]
He, M.Y.; Edgar, J.S.; Jeffries, G.D.M.; Lorenz, R.M.; Shelby, J.P.; Chiu, D.T. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem. 2005, 77, 1539–1544.
[5]
Srisa-Art, M.; de Mello, A.J.; Edel, J.B. High-throughput DNA droplet assays using picoliter reactor volumes. Anal. Chem. 2007, 79, 6682–6689, doi:10.1021/ac070987o.
[6]
Priest, C.; Herminghaus, S.; Seemann, R. Controlled electrocoalescence in microfluidics: Targeting a single lamella. Appl. Phys. Lett. 2006, 89, 134101.
[7]
kamholz, A.E.; Yager, P. Molecular diffusive scaling laws in pressure-driven microfluidic channels: Deviation from one-dimensional Einstein approximations. Sens. Actuators B 2002, 82, 117–121, doi:10.1016/S0925-4005(01)00990-X.
[8]
Schwesinger, N.; Frank, T.; Wurmus, H. A modular microfluid system with an integrated micromixer. J. Micromech. Microeng. 1996, 6, doi:10.1088/0960-1317/6/1/023.
[9]
Knight, J.; Vishwanath, A.; Brody, J.; Austin, R. A modular microfluid system with an silicon chip: Mixing nanoliters in microseconds. Phys. Rev. Lett. 1998, 80, 3863–3866.
Nguyen, N.-T.; Wu, Z. Micromixers—A review. J. Micromech. Microeng. 2005, 15, R1–R16, doi:10.1088/0960-1317/15/2/R01.
[14]
Tan, Y.C.; Fisher, J.S.; Lee, A.I.; Cristiniand, V.; Lee, A.P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 2004, 4, 292–298.
Glasgow, I.; Aubry, N. Enhancementsof microfluidic mixing using time pulsing. Lab Chip 2003, 3, 114–120, doi:10.1039/b302569a.
[17]
Yang, Z.; Matsumoto, S.; Goto, H.; Matsumoto, M.; Maeda, R. Ultrasonic micromixer for microfluidic systems. Sens. Actuators A Phys. 2001, 93, 266–272, doi:10.1016/S0924-4247(01)00654-9.
[18]
Tsai, J.-H.; Lin, L. Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump. Sens. Actuators A Phys. 2002, 97, 665–671, doi:10.1016/S0924-4247(02)00031-6.
Lin, Y.-H.; Lee, C.-H.; Lee, G.-B. A new droplet formation chip utilizing controllable moving-wall structures for double emulsion applications. In Proceedings of the IEEE 21st Conference on Micro Electro Mechanical Systems, Tucson, AZ, USA, January 2008; pp. 22–25.
[21]
Link, D.R.; Grasland-Mongrain, E.; Duri, A.; Sarrazin, F.; Cheng, Z.; Cristobal, G.; Marquezand, M.; Weitz, D.A. Electric control of droplets in microfluidic devices. Angew. Chem., Int. Ed. 2006, 45, 2556–2560.
Kawai, K.; Shibata, Y.; Shoji, S. 100 picoliter droplet handling using 256(28) microvalve array with 18 multiplexed control lines. In Proceedings of the 2009 International Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, USA, June 2009; pp. 802–805.
[24]
Bau, H.; Zhong, J.; Yi, M. A minute magneto hydro dynamic (MHD) mixer. Sens Actuators B Chem. 2001, 79, 207–215, doi:10.1016/S0925-4005(01)00851-6.
[25]
Wu, Z.; Nguyen, N. Convective- diffusive transport in parallel lamination micromixers. Microfluid. Nanfluid. 2005, 1, 208–217, doi:10.1007/s10404-004-0011-x.
[26]
Jin, B.-J.; Kim, Y.W.; Lee, Y.; Yoo, J.Y. Droplet merging in a straight microchannel using droplet size or viscosity difference. J. Micromech. Microeng. 2010, 20, doi:10.1088/0960-1317/20/3/035003.
[27]
Yoon, D.H.; Wakui, D.; Sekiguchi, T.; Shoji, S. Selective droplet sampling flow system using minimum number of horizontal pneumatic valves formed by single step PDMS molding. In Proceedings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands, October 2010; pp. 1085–1087.