|
Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1Abstract: It was shown that Lrp affects the transcription of multiple target genes, including those encoding enzymes involved in amino acid synthesis, central metabolism, transport processes and other regulators of transcription. In contrast, LrpA1 regulates transcription in a more specific manner. The aspB3 gene, coding for an aspartate transaminase, was repressed by LrpA1 in the presence of L-aspartate. Analytical DNA-affinity chromatography was adapted to high salt, and demonstrated binding of LrpA1 to its own promoter, as well as L-aspartate dependent binding to the aspB3 promoter.The gene expression profiles of two archaeal Lrp-homologues report in detail their role in H. salinarum R1. LrpA1 and Lrp show similar functions to those already described in bacteria, but in addition they play a key role in regulatory networks, such as controlling the transcription of other regulators. In a more detailed analysis ligand dependent binding of LrpA1 was demonstrated to its target gene aspB3.The basal transcription apparatus in Archaea shows similarity to the eukaryotic RNA polymerase (RNAP) II system [1-4]. Archaeal promoter sequences and the core proteins RNA polymerase (RNAP), TATA-binding protein (TBP), and the transcription factor IIB homologue (TFB) are structurally and functionally related to their eukaryotic counterparts [2,5]. Although the basal transcriptional complex is composed of eukaryotic-like components, archaeal regulatory proteins are often homologous to bacterial regulators [6]. One group of bacterial regulators which have been found in all archaeal genomes belongs to the Lrp/AsnC family (leucine-responsive regulatory protein (Lrp), asparagine synthase C (AsnC)). Escherichia coli Lrp is the most extensively studied member in bacteria [7,8] and controls the expression of up to 75 target genes. As a global regulator of transcription, Lrp is believed to coordinate cellular metabolism in response to nutritional and environmental alterations [9]. Most of these genes a
|