|
Zinc-finger domains of the transcriptional repressor KLF15 bind multiple sites in rhodopsin and IRBP promoters including the CRS-1 and G-rich repressor elementsAbstract: In EMSA and DNAseI footprinting assays, a KLF15-GST fusion protein containing the C-terminal zinc-finger domains (123 amino acids) showed zinc-dependent and sequence-specific binding to a 9 bp consensus sequence containing a core CG/TCCCC. Both the bovine rhodopsin and IRBP promoters contained multiple KLF15 binding sites that included the previously identified CRS-1 and G-rich repressor elements. KLF15 binding sites were highly conserved between the bovine, human, chimp and dog rhodopsin promoters, but less conserved in rodents. KLF15 reduced luciferase expression by bRho130-luc (containing 4 KLF15 sites) and repressed promoter activation by CRX (cone rod homeobox) and/or NRL (neural retina leucine zipper), although the magnitude of the reduction was smaller than previously reported for a longer bRho225-luc (containing 6 KFL15 sites).KLF15 binds to multiple 9 bp consensus sites in the Rhodospin and IRBP promoters including the CRS-1 and G-rich repressor elements. Based on the known expression pattern of KLF15 in non-photoreceptor cells, we hypothesize an in vivo role for KLF15 in repressing photoreceptor-specific gene expression in the inner retina.Photoreceptors are the highly specialized sensory receptors of the retina and express a unique array of genes that enable them to convert light energy into a neural signal. Many of these genes, including those encoding components of the phototransduction cascade [e.g. rhodopsin (Rho), transducin, arrestin, α– and β-phosphodiesterase (PDE)] and those involved in retinoid recycling [e.g. interphotoreceptor retinoid binding protein (IRBP/RBP3)], are expressed only in photoreceptor cells in the retina and in a subset of cells in the pineal gland [1-5]. In addition, these genes have highly stereotyped temporal and spatial patterns of expression during retinal development [6-8] that are transcriptionally regulated [7,9,10]. We are interested in understanding the transcriptional networks that regulate photoreceptor-specific gen
|