|
Targeting of highly conserved Dengue virus sequences with anti-Dengue virus trans-splicing group I intronsAbstract: Several anti-DENV Group I trans-splicing introns (αDENV-GrpIs) were designed and tested for their ability to target DENV-2 NGC genomes in situ. We have successfully targeted two different uracil bases on the positive sense genomic strand within the highly conserved 5'-3' cyclization sequence (CS) region common to all serotypes of DENV with our αDENV-GrpIs. Our ribozymes have demonstrated ability to specifically trans-splice a new RNA sequence downstream of the targeted site in vitro and in transfected insect cells as analyzed by firefly luciferase and RT-PCR assays. The effectiveness of these αDENV-GrpIs to target infecting DENV genomes is also validated in transfected or transformed Aedes mosquito cell lines upon infection with unattenuated DENV-2 NGC.Analysis shows that our αDENV-GrpIs have the ability to effectively trans-splice the DENV genome in situ. Notably, these results show that the αDENV-GrpI 9v1, designed to be active against all forms of Dengue virus, effectively targeted the DENV-2 NGC genome in a sequence specific manner. These novel αDENV-GrpI introns provide a striking alternative to other RNA based approaches for the transgenic suppression of DENV in transformed mosquito cells and tissues.The mosquito-borne Dengue viruses (DENV) are responsible for approximately 100 million infections and 200,000 deaths each year with 2.5 billion people remaining at risk for DENV infection, making DENV one of the most important viral diseases in the world (1). Infection with one of four antigenically distinct, but related Dengue virus serotypes (designated DENV 1 through 4) can result in Dengue fever (DF) and/or Dengue hemorrhagic fever (DHF) [1]. DF and DHF are endemic to tropical and subtropical regions of the world, but global changes in climate, rapid dispersal of virus due to ease of global travel, and migration of humans to non-tropical regions has resulted in DENV outbreaks in areas that were once non-endemic to the Dengue viruses [2,3]. Modern travel and sh
|