全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of new IS elements and studies of their dispersion in two subspecies of Leifsonia xyli

DOI: 10.1186/1471-2180-8-127

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sample sequencing of Lxc genome and comparative analysis with Lxx complete DNA sequence revealed a variable number of IS transposable elements acting upon genomic diversity. A detailed characterization of Lxc IS elements and a comparative review with IS elements of Lxx are presented. Each genome showed a unique set of elements although related to same IS families when considering features such as similarity among transposases, inverted and direct repeats, and element size. Most of the Lxc and Lxx IS families assigned were reported to maintain transposition at low levels using translation regulatory mechanisms, consistent with our in silico analysis. Some of the IS elements were found associated with rearrangements and specific regions of each genome. Differences were also found in the effect of IS elements upon insertion, although none of the elements were preferentially associated with gene disruption. A survey of transposases among genomes of Actinobacteria showed no correlation between phylogenetic relatedness and distribution of IS families. By using Southern hybridization, we suggested that diversification of Lxc isolates is also mediated by insertion sequences in probably recent events.Collectively our data indicate that transposable elements are involved in genome diversification of Lxc and Lxx. The IS elements were probably acquired after the divergence of the two subspecies and are associated with genome organization and gene contents. In addition to enhancing understanding of IS element dynamics in general, these data will contribute to our ongoing comparative analyses aimed at understanding the biological differences of the Lxc and Lxx.The Gram-positive, coryneform, fastidious, xylem-inhabiting bacteria Leifsonia xyli comprises two subspecies: L. xyli subsp. xyli (Lxx) and L. xyli subsp. cynodontis (Lxc). In its unique natural host, Lxx causes ratoon-stunting disease, a malady that affects sugarcane commercial fields worldwide, promoting losses of up to 3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133