全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The tep1 gene of Sinorhizobium meliloti coding for a putative transmembrane efflux protein and N-acetyl glucosamine affect nod gene expression and nodulation of alfalfa plants

DOI: 10.1186/1471-2180-9-17

Full-Text   Cite this paper   Add to My Lib

Abstract:

The SMc02161 locus in S. meliloti shows similarities with members of the Major Facilitator Superfamily (MFS) of transporters. A S. meliloti null-mutant shows increased sensitivity to chloramphenicol. This indication led us to rename the locus tep1 for transmembrane efflux protein. The lack of tep1 does not affect the appearance of swarming motility. Interestingly, nodule formation efficiency on alfalfa plants is improved in the tep1 mutant during the first days of the interaction though nod gene expression is lower than in the wild type strain. Curiously, a nodC mutation or the addition of N-acetyl glucosamine to the wild type strain lead to similar reductions in nod gene expression as in the tep1 mutant. Moreover, aminosugar precursors of Nod factors inhibit nodulation.tep1 putatively encodes a transmembrane protein which can confer chloramphenicol resistance in S. meliloti by expelling the antibiotic outside the bacteria. The improved nodulation of alfalfa but reduced nod gene expression observed in the tep1 mutant suggests that Tep1 transports compounds which influence nodulation. In contrast to Bradyrhizobium japonicum, we show that in S. meliloti there is no feedback regulation of nodulation genes. Moreover, the Nod factor precursor, N-acetyl glucosamine reduces nod gene expression and nodulation efficiency when present at millimolar concentrations. A role for Tep1 in the efflux of Nod factor precursors could explain the phenotypes associated with tep1 inactivation.The rhizobia-legume mutualistic symbiosis is characterized by the formation of root nodules in which the bacteria fix atmospheric nitrogen to generate nitrogen sources assimilable by the plant. Although the attack of phytopathogens on plants have a different outcome (i.e. disease), similar efficient strategies have been acquired by pathogenic and mutualistic bacteria to establish compatible associations with their host plants [1]. These include signals involved in cell-cell communication in bacterial

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133