Tumor margin detection for patients undergoing breast conservation surgery primarily occurs postoperatively. Previously, we demonstrated that gold nanoshells rapidly enhance contrast of HER2 overexpression in ex vivo tissue sections. Our ultimate objective, however, is to discern HER2 overexpressing tissue from normal tissue in whole, nonsectioned, specimens to facilitate rapid diagnoses. Here, we use targeted nanoshells to quickly and effectively visualize HER2 receptor expression in intact ex vivo human breast tissue specimens. Punch biopsies of human breast tissue were analyzed after a brief 5-minute incubation with and without HER2-targeted silica-gold nanoshells using two-photon microscopy and stereomicroscopy. Labeling was subsequently verified using reflectance confocal microscopy, darkfield hyperspectral imaging, and immunohistochemistry to confirm levels of HER2 expression. Our results suggest that anti-HER2 nanoshells used in tandem with a near-infrared reflectance confocal microscope and a standard stereomicroscope may potentially be used to discern HER2-overexpressing cancerous tissue from normal tissue in near real time and offer a rapid supplement to current diagnostic techniques. 1. Introduction Currently, breast cancer is the second leading cause of cancer-related deaths in women, and it accounts for approximately one-third of all cancers diagnosed in women in the United States [1]. To reduce cancer recurrence and progression, cancerous tissue must be completely eliminated, regardless of grade [2]. Surgical breast cancer therapy focuses on removing the primary tumor and identifying the possibility of metastatic disease from the evaluation of sentinel lymph nodes. Although some patients may require modified radical mastectomy, many patients with less-advanced breast cancer elect breast-conserving surgery. The presence of a positive surgical margin during these surgeries has been associated with lower rates of patient survival [3]. Due to residual cancer cells being left in many patients that undergo breast conservation therapy, as many as 40% of patients have experienced local breast cancer recurrence near the site of the original tumor [4]. Intraoperative treatment decisions are, therefore, absolutely critical. Presently, intraoperative tumor margin detection occurs primarily in specialized tertiary centers, such as The University of Texas M.D. Anderson Cancer Center (MDACC). In these centers, the resected tissue receives a preliminary evaluation by a pathologist while the patient remains in the operating room; if necessary, additional
References
[1]
A. C. Society, “Breast Cancer Facts and Figures 2005-2006,” American Cancer Society, Inc., 2010, http://www.cancer.org/Research/CancerFactsFigures/BreastCancerFactsFigures/breast-cancer-facts–figures-2005-2006.
[2]
R. G. Steen, A Conspiracy of Cells, Plenum Press, New York, NY, USA, 1993.
[3]
C. M. Mojica, R. Bastani, W. J. Boscardin, and N. A. Ponce, “Low-income women with breast abnormalities: system predictors of timely diagnostic resolution,” Cancer Control, vol. 14, no. 2, pp. 176–182, 2007.
[4]
B. Fisher, S. Anderson, J. Bryant et al., “Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer,” The New England Journal of Medicine, vol. 347, no. 16, pp. 1233–1241, 2002.
[5]
R. G. Pleijhuis, M. Graafland, J. de Vries, J. Bart, J. S. de Jong, and G. M. van Dam, “Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions,” Annals of Surgical Oncology, vol. 16, no. 10, pp. 2717–2730, 2009.
[6]
A. Oouchi, K. I. Sakata, H. Masuoka et al., “The treatment outcome of patients undergoing breast-conserving therapy: the clinical role of postoperative radiotherapy,” Breast Cancer, vol. 16, no. 1, pp. 49–57, 2009.
[7]
C. S. Melanie, W. N. Kent, J. Z. Mark, et al., “The importance of the lumpectomy surgical margin status in long term results of breast conservation,” Cancer, vol. 76, pp. 259–267, 1995.
[8]
N. Cabioglu, K. K. Hunt, A. A. Sahin et al., “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Annals of Surgical Oncology, vol. 14, no. 4, pp. 1458–1471, 2007.
[9]
R. A. Graham, M. J. Homer, C. J. Sigler et al., “The efficacy of specimen radiography in evaluating the surgical margins of impalpable breast carcinoma,” American Journal of Roentgenology, vol. 162, no. 1, pp. 33–36, 1994.
[10]
L. R. Bickford, J. Chang, K. Fu et al., “Evaluation of immunotargeted gold nanoshells as rapid diagnostic imaging agents for HER2-overexpressing breast cancer cells: a time-based analysis,” Nanobiotechnology, vol. 4, no. 1–4, pp. 1–8, 2008.
[11]
L. R. Bickford, G. Agollah, R. Drezek, and T.-K. K. Yu, “Silica-gold nanoshells as potential intraoperative molecular probes for HER2-overexpression in ex vivo breast tissue using near-infrared reflectance confocal microscopy,” Breast Cancer Research and Treatment, vol. 120, no. 3, pp. 547–555, 2010.
[12]
K. Sokolov, M. Follen, J. Aaron et al., “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Research, vol. 63, no. 9, pp. 1999–2004, 2003.
[13]
X. Liu, Q. Dai, L. Austin et al., “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” Journal of the American Chemical Society, vol. 130, no. 9, pp. 2780–2782, 2008.
[14]
R. Nahta, D. Yu, M. C. Hung, G. N. Hortobagyi, and F. J. Esteva, “Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer,” Nature Clinical Practice. Oncology, vol. 3, no. 5, pp. 269–280, 2006.
[15]
D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire, “Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene,” Science, vol. 235, no. 4785, pp. 177–182, 1987.
[16]
D. G. Hicks and S. Kulkarni, “HER2+ breast cancer,” American Journal of Clinical Pathology, vol. 129, pp. 263–273, 2008.
[17]
S. Vosoughhosseini, M. Lotfi, A. Fakhrjou et al., “Analysis of epidermal growth factor receptor in histopathologically tumor-free surgical margins in patients with oral squamous cell carcinoma,” African Journal of Biotechnology, vol. 11, pp. 516–520, 2012.
[18]
C. Loo, A. Lin, L. Hirsch, et al., “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technology in Cancer Research and Treatment, vol. 3, no. 1, pp. 33–40, 2004.
[19]
C. Loo, L. Hirsch, M. H. Lee et al., “Gold nanoshell bioconjugates for molecular imaging in living cells,” Optics Letters, vol. 30, no. 9, pp. 1012–1014, 2005.
[20]
C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Letters, vol. 5, no. 4, pp. 709–711, 2005.
[21]
W. St?ber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” Journal of Colloid and Interface Science, vol. 26, no. 1, pp. 62–69, 1968.
[22]
D. G. Duff, A. Baiker, and P. P. Edwards, “A new hydrosol of gold clusters. 1. Formation and particle size variation,” Langmuir, vol. 9, no. 9, pp. 2301–2309, 1993.
[23]
L. Bickford, J. Sun, K. Fu et al., “Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy,” Nanotechnology, vol. 19, no. 31, Article ID 315102, 2008.
[24]
E. S. Day, L. R. Bickford, J. H. Slater, N. S. Riggall, R. A. Drezek, and J. L. West, “Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer,” International Journal of Nanomedicine, vol. 5, no. 1, pp. 445–454, 2010.
[25]
T. Magalh?es, A. von Bohlen, M. L. Carvalho, and M. Becker, “Trace elements in human cancerous and healthy tissues from the same individual: a comparative study by TXRF and EDXRF,” Spectrochimica Acta B, vol. 61, no. 10-11, pp. 1185–1193, 2006.
[26]
S. A. Rasbridge, C. E. Gillett, A. M. Seymour et al., “The effects of chemotherapy on morphology, cellular proliferation, apoptosis and oncoprotein expression in primary breast carcinoma,” British Journal of Cancer, vol. 70, no. 2, pp. 335–341, 1994.
[27]
A. Haid, M. Knauer, S. Dunzinger et al., “Intra-operative sonography: a valuable aid during breast-conserving surgery for occult breast cancer,” Annals of Surgical Oncology, vol. 14, no. 11, pp. 3090–3101, 2007.
[28]
T. Karni, I. Pappo, J. Sandbank et al., “A device for real-time, intraoperative margin assessment in breast-conservation surgery,” American Journal of Surgery, vol. 194, no. 4, pp. 467–473, 2007.
[29]
L. Tafra, R. Fine, P. Whitworth et al., “Prospective randomized study comparing cryo-assisted and needle-wire localization of ultrasound-visible breast tumors,” American Journal of Surgery, vol. 192, no. 4, pp. 462–470, 2006.
[30]
M. Bakhshandeh, S. O. Tutuncuoglu, G. Fischer, and S. Masood, “Use of imprint cytology for assessment of surgical margins in lumpectomy specimens of breast cancer patients,” Diagnostic Cytopathology, vol. 35, no. 10, pp. 656–659, 2007.
[31]
N. Nitin, L. C. Alicia, M. Tim, et al., “Molecular imaging of glucose uptake in oral neoplasia following topical application of fluorescently labeled deoxy-glucose,” International Journal of Cancer, vol. 124, no. 11, pp. 2634–2642, 2009.
[32]
V. E. Strong, J. Humm, P. Russo et al., “A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes,” Surgical Endoscopy and Other Interventional Techniques, vol. 22, no. 2, pp. 386–391, 2008.
[33]
R. J. Langsner, L. P. Middleton, J. Sun, et al., “Wide-field imaging of fluorescent deoxy-glucose in ex vivo malignant and normal breast tissue,” Biomedical Optics Express, vol. 2, no. 6, pp. 1514–1523, 2011.
[34]
N. Nitin, K. J. Rosbach, A. El-Naggar, M. Williams, A. Gillenwaterand, and R. R. Richards-Kortum, “Optical molecular imaging of epidermal growth factor receptor expression to improve detection of oral neoplasia,” Neoplasia, vol. 11, no. 6, pp. 542–551, 2009.
[35]
J. Aaron, N. Nitin, K. Travis et al., “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” Journal of Biomedical Optics, vol. 12, no. 3, Article ID 034007, 2007.
[36]
A. L. van de Ven, K. Adler-Storthz, and R. Richards-Kortum, “Delivery of optical contrast agents using Triton-X100, part 1: reversible permeabilization of live cells for intracellular labeling,” Journal of Biomedical Pptics, vol. 14, no. 2, Article ID 021012, 2009.
[37]
A. L. van de Ven, K. Adler-Storthz, and R. Richards-Kortum, “Delivery of optical contrast agents using Triton-X100, part 2: enhanced mucosal permeation for the detection of cancer biomarkers,” Journal of biomedical optics, vol. 14, no. 2, Article ID 021013, 2009.