全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Microarrays  2013 

Gene Dosage Analysis in a Clinical Environment: Gene-Targeted Microarrays as the Platform-of-Choice

DOI: 10.3390/microarrays2020051

Keywords: array comparative genomic hybridisation (aCGH), dosage analysis, targeted microarray, molecular diagnosis, maturity-onset diabetes of the young (MODY), familial phaeochromocytoma/paraganglioma syndrome, Cowden syndrome

Full-Text   Cite this paper   Add to My Lib

Abstract:

The role of gene deletion and duplication in the aetiology of disease has become increasingly evident over the last decade. In addition to the classical deletion/duplication disorders diagnosed using molecular techniques, such as Duchenne Muscular Dystrophy and Charcot-Marie-Tooth Neuropathy Type 1A, the significance of partial or whole gene deletions in the pathogenesis of a large number single-gene disorders is becoming more apparent. A variety of dosage analysis methods are available to the diagnostic laboratory but the widespread application of many of these techniques is limited by the expense of the kits/reagents and restrictive targeting to a particular gene or portion of a gene. These limitations are particularly important in the context of a small diagnostic laboratory with modest sample throughput. We have developed a gene-targeted, custom-designed comparative genomic hybridisation (CGH) array that allows twelve clinical samples to be interrogated simultaneously for exonic deletions/duplications within any gene (or panel of genes) on the array. We report here on the use of the array in the analysis of a series of clinical samples processed by our laboratory over a twelve-month period. The array has proven itself to be robust, flexible and highly suited to the diagnostic environment.

References

[1]  Kunkel, L.M.; Hejtmancik, J.F.; Caskey, C.T.; Speer, A.; Monaco, A.P.; Middlesworth, W.; Colletti, C.A.; Bertelson, C.; Muller, U.; Bresnan, M.; et al. Analysis of deletions in DNA from patients with Becker and Duchenne muscular dystrophy. Nature 1986, 322, 73–77.
[2]  Roa, B.B.; Garcia, C.A.; Lupski, J.R. Charcot-Marie-Tooth disease type 1A: Molecular mechanisms of gene dosage and point mutation underlying a common inherited peripheral neuropathy. Int. J. Neurol. 1991–1992, 25–26, 97–107.
[3]  Stenson, P.D.; Mort, M.; Ball, E.V.; Howells, K.; Phillips, A.D.; Thomas, N.S.; Cooper, D.N. The human gene mutation database: 2008 update. Genome Med. 2009, 1, doi:10.1186/gm13.
[4]  Stenson, P.D.; Ball, E.V.; Mort, M.; Phillips, A.D.; Shiel, J.A.; Thomas, N.S.; Abeysinghe, S.; Krawczak, M.; Cooper, D.N. Human gene mutation database (hgmd): 2003 update. Hum. Mutat. 2003, 21, 577–581, doi:10.1002/humu.10212.
[5]  Eijk-Van Os, P.G.; Schouten, J.P. Multiplex ligation-dependent probe amplification (MLPA) for the detection of copy number variation in genomic sequences. Meth. Mol. Biol. 2011, 688, 97–126, doi:10.1007/978-1-60761-947-5_8.
[6]  Sieber, O.M.; Lamlum, H.; Crabtree, M.D.; Rowan, A.J.; Barclay, E.; Lipton, L.; Hodgson, S.; Thomas, H.J.; Neale, K.; Phillips, R.K.; et al. Whole-gene APC deletions cause classical familial adenomatous polyposis, but not attenuated polyposis or “multiple” colorectal adenomas. Proc. Natl. Acad. Sci. USA 2002, 99, 2954–2958, doi:10.1073/pnas.042699199.
[7]  Bendavid, C.; Kleta, R.; Long, R. FISH diagnosis of the common 57-kb deletion in CTNS causing cystinosis. Hum. Genet. 2004, 115, 510–514, doi:10.1007/s00439-004-1170-2.
[8]  Gouas, L.; Goumy, C.; Veronese, L.; Tchirkov, A.; Vago, P. Gene dosage methods as diagnostic tools for the identification of chromosome abnormalities. Pathol. Biol. 2008, 56, 345–353, doi:10.1016/j.patbio.2008.03.010.
[9]  Armour, J.A.L.; Barton, D.E.; Cockbuen, D.J.; Taylor, G.R. The detection of large deletions or duplications in genomic DNA. Hum. Mutat. 2002, 20, 325–337, doi:10.1002/humu.10133.
[10]  Marquis-Nicholson, R.; Doherty, E.; Thrush, A.; Love, J.M.; Lan, C.-C.; George, A.M.; Love, D.R. Array-based identification of copy number changes: Simultaneous gene-focused and low resolution whole human genome analysis. Sultan Qaboos Univ. Med. J. 2013, 13, 69–79.
[11]  Bird, T.D. Charcot-Marie-Tooth Neuropathy Type 1; Pagon, R.A., Bird, T.D., Dolan, C.R., Eds.; GeneReviews?: Seattle, WA, USA, 1993.
[12]  Bird, T.D. Hereditary Neuropathy with Liability to pressure Palsies; Pagon, R.A., Bird, T.D., Dolan, C.R., Eds.; GeneReviews?: Seattle, WA, USA, 1993.
[13]  Flanigan, K.M.; Dunn, D.M.; von Niederhausern, A.; Soltanzadeh, P.; Gappmaier, E.; Howard, M.T.; Sampson, J.B.; Mendell, J.R.; Wall, C.; King, W.M.; et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: Application of modern diagnostic techniques to a large cohort. Hum. Mutat. 2009, 30, 1657–1666, doi:10.1002/humu.21114.
[14]  Roche NimbleGen. Available online: http://www.nimblegen.com (accessed on 25 March 2013).
[15]  UCSC Genome Browser. Available online: http://genome.ucsc.edu (accessed on 25 March 2013).
[16]  Aartsma-Rus, A.; van Deutekom, J.C.; Fokkema, I.F.; van Ommen, G.J.; den Dunnen, J.T. Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases confirm the reading-frame rule. Muscle Nerve 2006, 34, 135–144, doi:10.1002/mus.20586.
[17]  Beggs, A.H.; Koenig, M.; Boyce, F.M.; Kunkel, L.M. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum. Genetic. 1990, 86, 45–48.
[18]  Monaco, A.P.; Bertelson, C.J.; Liechti-Gallati, S.; Moser, H.; Kunkel, L.M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988, 2, 90–95.
[19]  DMD Exonic Deletions/Duplications Reading-Frame Checker 1.9. Available online: http://www.humgen.nl/scripts/DMD_frame.php (accessed on 25 March 2013).
[20]  Abbs, S.; Tuffery-Giraud, S.; Bakker, E.; Ferlini, A.; Sejersen, T.; Mueller, C.R. Best practice guidelines on molecular diagnostics in Duchenne/Becker muscular dystrophies. Neuromuscul. Disord. 2010, 20, 422–427, doi:10.1016/j.nmd.2010.04.005.
[21]  Eng, C. PTEN Hamartoma Tumor Syndrome (PHTS); Pagon, R.A., Bird, T.D., Dolan, C.R., Eds.; GeneReviews?: Seattle, WA, USA, 1993.
[22]  Chibon, F.; Primois, C.; Bressieux, J.M.; Lacombe, D.; Lok, C.; Mauriac, L.; Taieb, A.; Longy, M. Contribution of PTEN large rearrangements in Cowden disease: A multiplex amplifiable probe hybridisation (MAPH) screening approach. J. Med. Genet. 2008, 45, 657–665, doi:10.1136/jmg.2008.058131.
[23]  McWhinney, S.R.; Pilarski, R.T.; Forrester, S.R.; Schneider, M.C.; Sarquis, M.M.; Dias, E.P.; Eng, C. Large germline deletions of mitochondrial complex II subunits SDHB and SDHD in hereditary paraganglioma. J. Clin. Endocrinol. Metab. 2004, 89, 5694–5699, doi:10.1210/jc.2004-0769.
[24]  Cascon, A.; Landa, I.; Lopez-Jimenez, E.; Dieaz-Hernandez, A.; Buchta, M.; Montero-Conde, C.; Leskela, S.; Leandro-Garcia, L.J.; Leton, R.; Rodriquez-Antona, C.; et al. Molecular characterisation of a common SDHB deletion in paraganglioma patients. J. Med. Genet. 2008, 45, 233–238.
[25]  Bluteau, O.; Jeannot, E.; Bioulac-Sage, P.; Marques, J.M.; Blanc, J.F.; Bui, H.; Beaudoin, J.C.; Franco, D.; Balabaud, C.; Laurent-Puig, P.; Zucman-Rossi, J. Bi-allelic inactivation of TCF1 in hepatic adenomas. Nat. Genet. 2002, 32, 312–315, doi:10.1038/ng1001.
[26]  Ellard, S.; Thomas, K.; Edghill, E.L.; Owens, M.; Ambye, L.; Cropper, J.; Little, J.; Strachan, M.; Stride, A.; Ersoy, B. Partial and whole gene deletion mutations of the GCK and HNF1A genes in maturity-onset diabetes of the young. Diabetologia 2007, 50, 2313–2317, doi:10.1007/s00125-007-0798-6.
[27]  Bach, I.; Pontoglio, M.; Yaniv, M. Structure of the gene encoding hepatocytes nuclear factor 1 (HNF1). NAR 1992, 20, 4199–4204, doi:10.1093/nar/20.16.4199.
[28]  Del Gaudio, D.; Yang, Y.; Boggs, B.A.; Schmitt, E.S.; Lee, J.A.; Sahoo, T.; Pham, H.T.; Wiszniewska, J.; Chinault, A.C.; Beaudet, A.L.; Eng, C.M. Molecular diagnosis of Duchenne/Becker muscular dystrophy: Enhanced detection of dystrophin gene rearrangements by oligonucleotide array-comparative genomic hybridization. Hum. Mutat. 2008, 29, 1100–1107, doi:10.1002/humu.20841.
[29]  Bovolenta, M.; Neri, M.; Fini, S.; Fabris, M.; Trabanelli, C.; Venturoli, A.; Martoni, E.; Bassi, E.; Spitali, P.; Brioschi, S.; et al. A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies. BMC Genomics 2008, 9, doi:10.1186/1471-2164-9-572.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133