|
BMC Microbiology 2009
Photonic plasmid stability of transformed Salmonella Typhimurium: A comparison of three unique plasmidsAbstract: In presence of ampicillin (AMP), S. typh-lux with pCGLS-1, pAK1-lux and pXEN-1 plasmids exhibited 100% photon-emitting colonies over a 10-d study period. Photon emitters of S. typh-lux with pCGLS-1, pAK1-lux and pXEN-1 without AMP selection decreased over time (P < 0.05), representing only 11 ± 1%, 35 ± 1% and 43 ± 1%, respectively, of original photon emitting properties of the bacterial population by d 10. Photonic emissions were positively correlated with bacterial concentration (P < 0.05) for pAK1-lux, pCGLS-1 and pXEN-1 (r = 0.96, 0.98 and 0.82, respectively). When stratified by high, medium and low density bacteria concentrations, photonic emissions for high density populations containing pAK1-lux, pCGLS-1 and pXEN-1 resulted in differences of photonic emissions across a range of bacterial concentrations (1 × 107 to 1 × 109 CFU, P < 0.05) with positive correlations (P < 0.05) of (r = 0.72, 0.46 and 0.72, respectively). The correlation of photonic emissions with bacterial concentrations for samples with medium and low density bacteria (pAK1-lux, pCGLS-1, and pXEN-1 plasmids) imaged in tubes were also positively correlated (medium; r = 0.69, 0.49, 0.46, low; r = 0.90, 0.71, 0.68, respectively; P > 0.05); although photonic emissions across a range of bacterial concentrations were not different (1 × 104 to 1 × 106 CFU, P > 0.05). For very low density bacterial concentrations imaged in 96 well plates photonic emissions were positively correlated with bacterial concentration (P < 0.05) for pAK1-lux, pCGLS-1, and pXEN-1 plasmids (r = 0.99, 0.99, and 0.96, respectively), and photonic emissions across a range of bacterial concentrations (1 × 103 to 1 × 105 CFU) low to high were different in the 96-well plate format (P < 0.05).These data characterize photon stability properties for S. typh-lux transformed with three different photon generating plasmids that may facilitate real-time Salmonella tracking using in vivo or in situ biophotonic paradigms.Researchers are increas
|