全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genetic and Clinical Features of Multiple Endocrine Neoplasia Types 1 and 2

DOI: 10.1155/2012/705036

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiple endocrine neoplasia (MEN) are clinical inherited syndromes affecting different endocrine glands. Three different patterns of MEN syndromes can occur (MEN 1, MEN 2A, and MEN 2B). MEN syndromes are very rare, affect all ages and both sexes are equally affected. MEN 1 is characterized by the neoplastic transformation of the parathyroid glands, pancreatic islets, anterior pituitary, and gastrointestinal tract. Heterozygous MEN 1 germline mutations have been detected in about 70–80% of patients with MEN 1. The mutations are scattered throughout the entire genomic sequence of the gene. MEN 1 patients are characterized by variable clinical features, thus suggesting the lack of a genotype-phenotype correlation. Therapeutical approaches are different according to the different endocrinopathies. The prognosis is generally good if adequate treatment is provided. In MEN 2 syndromes, the medullary thyroid cancer (MTC) is almost invariably present and can be associated with pheochromocytoma (PHEO) and/or multiple adenomatosis of parathyroid glands with hyperparathyroidism (PHPT). The different combination of the endocrine neoplasia gives origin to 3 syndromes: MEN 2A, MEN 2B, and FMTC. The clinical course of MTC varies considerably in the three syndromes. It is very aggressive in MEN 2B, almost indolent in the majority of patients with FMTC and with variable degrees of aggressiveness in patients with MEN 2A. Activating germline point mutations of the RET protooncogene are present in 98% of MEN 2 families. A strong genotype-phenotype correlation has been observed and a specific RET mutation may be responsible for a more or less aggressive clinical course. The treatment of choice for primary MTC is total thyroidectomy with central neck lymph nodes dissection. Nevertheless, 30% of MTC patients, especially in MEN 2B and 2A, are not cured by surgery. Recently, developed molecular therapeutics that target the RET pathway have shown very promising activity in clinical trials of patients with advanced MTC. MEN 2 prognosis is strictly dependent on the MTC aggressiveness and thus on the success of the initial treatment. 1. Introduction The term multiple endocrine neoplasia (MEN) defines clinical inherited syndromes affecting different endocrine glands, each with its own characteristic pattern [1, 2]. In some cases, the tumors are malignant, in others, benign. Benign or malignant tumors of nonendocrine tissues occur as components of some of these tumor syndromes. Three different patterns of MEN syndromes can occur (MEN 1, MEN 2A, and MEN 2B) with some new variants such

References

[1]  J. A. Carney, “Familial multiple endocrine neoplasia syndromes: components, classification, and nomenclature,” Journal of Internal Medicine, vol. 243, no. 6, pp. 425–432, 1998.
[2]  D. J. Marsh and O. Gimm, “Multiple endocrine neoplasia: types 1 and 2,” Advances in Oto-Rhino-Laryngology, vol. 70, pp. 84–90, 2011.
[3]  M. L. Brandi, R. F. Gagel, A. Angeli et al., “Consensus: guidelines for diagnosis and therapy of MEN type 1 and type 2,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 12, pp. 5658–5671, 2001.
[4]  R. T. Kloos, C. Eng, D. B. Evans et al., “Medullary thyroid cancer: management guidelines of the American Thyroid Association,” Thyroid, vol. 19, no. 6, pp. 565–612, 2009.
[5]  N. Wohllk, H. Schweizer, Z. Erlic et al., “Multiple endocrine neoplasia type 2,” Best Practice and Research, vol. 24, no. 3, pp. 371–387, 2010.
[6]  J. A. Carney, “Familial multiple endocrine neoplasia: the first 100 years,” American Journal of Surgical Pathology, vol. 29, no. 2, pp. 254–274, 2005.
[7]  B. Asgharian, Y. J. Chen, N. J. Patronas et al., “Meningiomas may be a component tumor of multiple endocrine neoplasia type 1,” Clinical Cancer Research, vol. 10, no. 3, pp. 869–880, 2004.
[8]  B. Asgharian, M. L. Turner, F. Gibril, L. K. Entsuah, J. Serrano, and R. T. Jensen, “Cutaneous tumors in patients with multiple endocrine neoplasm type 1 (MEN1) and gastrinomas: prospective study of frequency and development of criteria with high sensitivity and specificity for MEN1,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5328–5336, 2004.
[9]  T. N. Darling, M. C. Skarulis, S. M. Steinberg, S. J. Marx, A. M. Spiegel, and M. Turner, “Multiple facial angiofibromas and collagenomas in patients with multiple endocrine neoplasia type 1,” Archives of Dermatology, vol. 133, no. 7, pp. 853–857, 1997.
[10]  C. del Pozo, L. García-Pascual, M. Balsells et al., “Parathyroid carcinoma in multiple endocrine neoplasia type 1. case report and review of the literature,” Hormones, vol. 10, no. 4, pp. 326–331, 2011.
[11]  F. Cetani, E. Pardi, S. Borsari, and C. Marcocci, “Molecular pathogenesis of primary hyperparathyroidism,” Journal of Endocrinological Investigation, vol. 34, no. 7, supplement, pp. 35–39, 2011.
[12]  C. R. C. Pieterman, L. T. Van Hulsteijn, M. Den Heijer et al., “Primary hyperparathyroidism in MEN1 patients: a cohort study with longterm follow-up on preferred surgical procedure and the relation with genotype,” Annals of Surgery, vol. 255, no. 6, pp. 1171–1178, 2012.
[13]  C. Eller-Vainicher, I. Chiodini, C. Battista et al., “Sporadic and MEN1-related primary hyperparathyroidism: differences in clinical expression and severity,” Journal of Bone and Mineral Research, vol. 24, no. 8, pp. 1404–1410, 2009.
[14]  C. Romei, S. Mariotti, L. Fugazzola et al., “Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes,” European Journal of Endocrinology, vol. 163, no. 2, pp. 301–308, 2010.
[15]  K. Frank-Raue, W. H?ppner, A. Frilling et al., “Mutations of the ret protooncogene in German multiple endocrine neoplasia families: relation between genotype and phenotype,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 5, pp. 1780–1783, 1996.
[16]  A. Machens, P. Niccoli-Sire, J. Hoegel et al., “Early malignant progression of hereditary medullary thyroid cancer,” New England Journal of Medicine, vol. 349, no. 16, pp. 1517–1525, 2003.
[17]  D. H. Schussheim, M. C. Skarulis, S. K. Agarwal et al., “Multiple endocrine neoplasia type 1: new clinical and basic findings,” Trends in Endocrinology and Metabolism, vol. 12, no. 4, pp. 173–178, 2001.
[18]  F. Tonelli, F. Giudici, G. Fratini, and M. L. Brandi, “Pancreatic endocrine tumors in multiple endocrine neoplasia type 1 syndrome: review of literature,” Endocrine Practice, vol. 17, supplement 3, pp. 33–40, 2011.
[19]  B. Delemer, “MEN1 and pituitary adenomas,” Annales d'Endocrinologie, vol. 73, no. 2, pp. 59–61, 2012.
[20]  L. V. Syro, B. W. Scheithauer, K. Kovacs et al., “Pituitary tumors in patients with MEN1 syndrome,” Clinics, vol. 67, supplement, pp. 43–48, 2012.
[21]  S. Schaefer, M. Shipotko, S. Meyer et al., “Natural course of small adrenal lesions in multiple endocrine neoplasia type 1: an endoscopic ultrasound imaging study,” European Journal of Endocrinology, vol. 158, no. 5, pp. 699–704, 2008.
[22]  R. V. Thakker, “Multiple endocrine neoplasia type 1 (MEN1),” Best Practice & Research, vol. 24, no. 3, pp. 355–370, 2010.
[23]  P. Goudet, C. Bonithon-Kopp, A. Murat et al., “Gender-related differences in MEN1 lesion occurrence and diagnosis: a cohort study of 734 cases from the Groupe d'étude des Tumeurs Endocrines,” European Journal of Endocrinology, vol. 165, no. 1, pp. 97–105, 2011.
[24]  S. Miedlich, T. Lohmann, U. Schneyer, P. Lamesch, and R. Paschke, “Familial isolated primary hyperparathyroidism—a multiple endocrine neoplasia type 1 variant?” European Journal of Endocrinology, vol. 145, no. 2, pp. 155–160, 2001.
[25]  C. Larsson, B. Skogseid, K. Oberg, Y. Nakamura, and M. Nordenskjold, “Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma,” Nature, vol. 332, no. 6159, pp. 85–87, 1988.
[26]  S. C. Chandrasekharappa, S. C. Guru, P. Manickam et al., “Positional cloning of the gene for multiple endocrine neoplasia-type 1,” Science, vol. 276, no. 5311, pp. 404–406, 1997.
[27]  A. G. Knudson, “Two genetic hits (more or less) to cancer,” Nature Reviews Cancer, vol. 1, no. 2, pp. 157–162, 2001.
[28]  K. Balogh, A. Patócs, L. Hunyady, and K. Rácz, “Menin dynamics and functional insight: take your partners,” Molecular and Cellular Endocrinology, vol. 326, no. 1-2, pp. 80–84, 2010.
[29]  T. Wu and X. Hua, “Menin represses tumorigenesis via repressing cell proliferation,” American Journal of Cancer Research, vol. 1, no. 6, pp. 726–39, 2011.
[30]  J. Huang, B. Gurung, B. Wan et al., “The same pocket in menin binds both MLL and JUND but has opposite effects on transcription,” Nature, vol. 482, no. 7386, pp. 542–546, 2012.
[31]  M. C. Lemos and R. V. Thakker, “Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene,” Human Mutation, vol. 29, no. 1, pp. 22–32, 2008.
[32]  J. S. Crabtree, P. C. Scacheri, J. M. Ward et al., “A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 1118–1123, 2001.
[33]  P. Bertolino, W. M. Tong, D. Galendo, Z. Q. Wang, and C. X. Zhang, “Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1,” Molecular Endocrinology, vol. 17, no. 9, pp. 1880–1892, 2003.
[34]  J. S. Crabtree, P. C. Scacheri, J. M. Ward et al., “Of mice and MEN1: insulinomas in a conditional mouse knockout,” Molecular and Cellular Biology, vol. 23, no. 17, pp. 6075–6085, 2003.
[35]  C. J. Lips, K. M. Dreijerink, and J. W. H?ppener, “Variable clinical expression in patients with a germline MEN1 disease gene mutation: clues to a genotype-phenotype correlation,” Clinics, vol. 67, supplement, pp. 49–56, 2012.
[36]  S.-E. Olufemi, J. S. Green, P. Manickam et al., “Common ancestral mutation in the MEN1 gene is likely responsible for the prolactinoma variant of MEN1 (MEN1(Burin)) in four kindreds from Newfoundland,” Human Mutation, vol. 11, no. 4, pp. 264–269, 1998.
[37]  C. Kong, S. Ellard, C. Johnston, and N. R. Farid, “Multiple endocrine neoplasia type 1Burin from Mauritius: a novel MEN 1 mutation,” Journal of Endocrinological Investigation, vol. 24, no. 10, pp. 806–810, 2001.
[38]  J. D. M. Lourenco, R. A. Toledo, I. I. Mackowiak et al., “Multiple endocrine neoplasia type 1 in Brazil: MEN1 founding mutation, clinical features, and bone mineral density profile,” European Journal of Endocrinology, vol. 159, no. 3, pp. 259–274, 2008.
[39]  F. Cetani, E. Pardi, A. Giovannetti et al., “Genetic analysis of the MEN1 gene and HPRT2 locus in two Italian kindreds with familial isolated hyperparathyroidism,” Clinical Endocrinology, vol. 56, no. 4, pp. 457–464, 2002.
[40]  N. S. Pellegata, L. Quintanilla-Martinez, H. Siggelkow et al., “Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 42, pp. 15558–15563, 2006.
[41]  N. S. Pellegata, “MENX,” Annales d'Endocrinologie, vol. 73, no. 2, pp. 65–70, 2012.
[42]  S. Molatore and N. S. Pellegata, “The MENX syndrome and p27: relationships with multiple endocrine neoplasia,” Progress in Brain Research, vol. 182, pp. 295–320, 2010.
[43]  I. Marinoni and N. S. Pellegata, “p27kip1: a new multiple endocrine neoplasia gene?” Neuroendocrinology, vol. 93, no. 1, pp. 19–28, 2011.
[44]  N. Nilubol, L. Weinstein, W. F. Simonds et al., “Preoperative localizing studies for initial parathyroidectomy in MEN1 syndrome: is there any benefit?” World Journal of Surgery, vol. 36, no. 6, pp. 1368–1374, 2012.
[45]  B. Vergès, F. Boureille, P. Goudet et al., “Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 2, pp. 457–465, 2002.
[46]  C. Barbe, A. Murat, B. Dupas et al., “Magnetic resonance imaging versus endoscopic ultrasonography for the detection of pancreatic tumours in multiple endocrine neoplasia type 1,” Digestive and Liver Disease, vol. 44, no. 3, pp. 228–234, 2012.
[47]  R. V. Thakker, P. J. Newey, G. V. Walls et al., “Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1),” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 9, pp. 2990–3011, 2012.
[48]  C. A. Stratakis, D. H. Schussheim, S. M. Freedman et al., “Pituitary macroadenoma in a 5-year-old: an early expression of multiple endocrine neoplasia type 1,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 12, pp. 4776–4780, 2000.
[49]  T. Carling and R. Udelsman, “Parathyroid surgery in familial hyperparathyroid disorders,” Journal of Internal Medicine, vol. 257, no. 1, pp. 27–37, 2005.
[50]  J. Waldmann, C. L. López, P. Langer, M. Rothmund, and D. K. Bartsch, “Surgery for multiple endocrine neoplasia type 1-associated primary hyperparathyroidism,” British Journal of Surgery, vol. 97, no. 10, pp. 1528–1534, 2010.
[51]  D. M. Elaraj, M. C. Skarulis, S. K. Libutti et al., “Results of initial operation for hyperparathyroidism in patients with multiple endocrine neoplasia type 1,” Surgery, vol. 134, no. 6, pp. 858–865, 2003.
[52]  F. Tonelli, S. Spini, M. Tommasi et al., “Intraoperative parathormone measurement in patients with multiple endocrine neoplasia type I syndrome and hyperparathyroidism,” World Journal of Surgery, vol. 24, no. 5, pp. 556–563, 2000.
[53]  F. Tonelli, T. Marcucci, G. Fratini, M. S. Tommasi, A. Falchetti, and M. L. Brandi, “Is total parathyroidectomy the treatment of choice for hyperparathyroidism in multiple endocrine neoplasia type 1?” Annals of Surgery, vol. 246, no. 6, pp. 1075–1082, 2007.
[54]  P. V. Dickson, T. A. Rich, Y. Xing et al., “Achieving eugastrinemia in MEN1 patients: both duodenal inspection and formal lymph node dissection are important,” Surgery, vol. 150, no. 6, pp. 1143–1152, 2011.
[55]  F. Triponez, D. Dosseh, P. Goudet et al., “Epidemiology data on 108 MEN 1 patients from the GTE with isolated nonfunctioning tumors of the pancreas,” Annals of Surgery, vol. 243, no. 2, pp. 265–272, 2006.
[56]  K. ?berg, “Neuroendocrine tumors of the digestive tract: impact of new classifications and new agents on therapeutic approaches,” Current Opinion in Oncology, vol. 24, no. 4, pp. 433–440, 2012.
[57]  A. Germain, M. Klein, and L. Brunaud, “Surgical management of adrenal tumors,” Journal of Visceral Surgery, vol. 148, no. 4, pp. e250–e261, 2011.
[58]  P. Goudet, A. Murat, C. Binquet et al., “Risk factors and causes of death in men1 disease. a gte (groupe d'etude des tumeurs endocrines) cohort study among 758 patients,” World Journal of Surgery, vol. 34, no. 2, pp. 249–255, 2010.
[59]  H. P. H. Neumann, A. Vortmeyer, D. Schmidt et al., “Brief report: evidence of MEN-2 in the original description of classic pheochromocytoma,” New England Journal of Medicine, vol. 357, no. 13, pp. 1311–1315, 2007.
[60]  J. H. Sipple, “Multiple endocrine neoplasia type 2 syndromes: historical perspectives,” Henry Ford Hospital Medical Journal, vol. 32, no. 4, pp. 219–222, 1984.
[61]  H. R. Keiser, M. A. Beaven, J. Doppman, S. Wells, and L. M. Buja, “Sipple's syndrome: medullary thyroid carcinoma, pheochromocytoma, and parathyroid disease. Studies in a large family. NIH conference,” Annals of Internal Medicine, vol. 78, no. 4, pp. 561–579, 1973.
[62]  A. L. Steiner, A. D. Goodman, and S. R. Powers, “Study of a kindred with pheochromocytoma, medullary thyroid carcinoma, hyperparathyroidism and Cushing's disease: multiple endocrine neoplasia, type 2,” Medicine, vol. 47, no. 5, pp. 371–409, 1968.
[63]  J. R. Howe, J. A. Norton, S. A. Wells, C. Proye, G. B. Talpos, and S. E. Carty, “Prevalence of pheochromocytoma and hyperparathyroidism in multiple endocrine neoplasia type 2A: results of long-term follow-up,” Surgery, vol. 114, no. 6, pp. 1070–1077, 1993.
[64]  W. B. Inabnet, P. Caragliano, D. Pertsemlidis et al., “Pheochromocytoma: inherited associations, bilaterality, and cortex preservation,” Surgery, vol. 128, no. 6, pp. 1007–1012, 2000.
[65]  J. M. Rodriguez, M. Balsalobre, J. L. Ponce et al., “Pheochromocytoma in MEN 2A syndrome. Study of 54 patients,” World Journal of Surgery, vol. 32, no. 11, pp. 2520–2526, 2008.
[66]  M. Verdy, A. M. Weber, and C. C. Roy, “Hirschsprung's disease in a family with multiple endocrine neoplasia type 2,” Journal of Pediatric Gastroenterology and Nutrition, vol. 1, no. 4, pp. 603–607, 1982.
[67]  M. B. Verdy, M. Cadotte, and W. Schurch, “A French Canadian family with multiple endocrine neoplasia type 2 syndromes,” Henry Ford Hospital Medical Journal, vol. 32, no. 4, pp. 251–253, 1984.
[68]  C. Eng, D. Clayton, I. Schuffenecker et al., “The relationship between specific ret proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2: international RET mutation consortium analysis,” Journal of the American Medical Association, vol. 276, no. 19, pp. 1575–1579, 1996.
[69]  D. T. Donovan, M. L. Levy, B. R. Alford et al., “Familial cutaneous lichen amyloidosis in association with multiple endocrine neoplasia type 2A: a new variant,” Henry Ford Hospital Medical Journal, vol. 37, no. 3-4, pp. 147–150, 1989.
[70]  R. F. Gagel, M. L. Levy, D. T. Donovan, B. R. Alford, T. Wheeler, and J. A. Tschen, “Multiple endocrine neoplasia type 2a associated with cutaneous lichen amyloidosis,” Annals of Internal Medicine, vol. 111, no. 10, pp. 802–806, 1989.
[71]  W. J. Cunliffe, P. Hudgson, J. J. Fulthorpe et al., “A calcitonin-secreting medullary thyroid carcinoma associated with mucosal neuromas, marfanoid features, myopathy and pigmentation,” The American Journal of Medicine, vol. 48, no. 1, pp. 120–126, 1970.
[72]  M. Brauckhoff, A. Machens, S. Hess et al., “Premonitory symptoms preceding metastatic medullary thyroid cancer in MEN 2B: an exploratory analysis,” Surgery, vol. 144, no. 6, pp. 1044–1051, 2008.
[73]  J. R. Farndon, G. S. Leight, and W. G. Dilley, “Familial medullary thyroid carcinoma without associated endocrinopathies: a distinct clinical entity,” British Journal of Surgery, vol. 73, no. 4, pp. 278–281, 1986.
[74]  R. Elisei, C. Romei, B. Cosci et al., “Brief report: RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 12, pp. 4725–4729, 2007.
[75]  P. Niccoli-Sire, A. Murat, V. Rohmer et al., “Familial medullary thyroid carcinoma with noncysteine RET mutations: phenotype-genotype relationship in a large series of patients,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 8, pp. 3746–3753, 2001.
[76]  C. Romei, B. Cosci, G. Renzini et al., “RET genetic screening of sporadic medullary thyroid cancer (MTC) allows the preclinical diagnosis of unsuspected gene carriers and the identification of a relevant percentage of hidden familial MTC (FMTC),” Clinical Endocrinology, vol. 74, no. 2, pp. 241–247, 2011.
[77]  M. S. Cohen and J. F. Moley, “Surgical treatment of medullary thyroid carcinoma,” Journal of Internal Medicine, vol. 253, no. 6, pp. 616–626, 2003.
[78]  H. Donis-Keller, S. Dou, D. Chi et al., “Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC,” Human Molecular Genetics, vol. 2, no. 7, pp. 851–856, 1993.
[79]  L. M. Mulligan, J. B. J. Kwok, C. S. Healey et al., “Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A,” Nature, vol. 363, no. 6428, pp. 458–460, 1993.
[80]  C. Eng, D. P. Smith, L. M. Mulligan et al., “Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours,” Human Molecular Genetics, vol. 3, no. 2, pp. 237–241, 1994.
[81]  M. F. Erdogan, A. Gürsoy, G. ?zgen et al., “Ret proto-oncogene mutations in apparently sporadic Turkish medullary thyroid carcinoma patients: Turkmen study,” Journal of Endocrinological Investigation, vol. 28, no. 9, pp. 806–809, 2005.
[82]  C. Eng, L. M. Mulligan, D. P. Smith et al., “Low frequency of germline mutations in the RET protooncogene in patients with apparently sporadic medullary thyroid carcinoma,” Clinical Endocrinology, vol. 43, no. 1, pp. 123–127, 1995.
[83]  G. Orgiana, G. Pinna, A. Camedda et al., “A new germline RET mutation apparently devoid of transforming activity serendipitously discovered in a patient with atrophic autoimmune thyroiditis and primary ovarian failure,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 10, pp. 4810–4816, 2004.
[84]  B. Cosci, A. Vivaldi, C. Romei et al., “In silico and in vitro analysis of rare germline allelic variants of RET oncogene associated with medullary thyroid cancer,” Endocrine-Related Cancer, vol. 18, no. 5, pp. 603–612, 2011.
[85]  J. R. Hansford and L. M. Mulligan, “Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis,” Journal of Medical Genetics, vol. 37, no. 11, pp. 817–827, 2000.
[86]  K. M. Zbuk and C. Eng, “Cancer phenomics: RET and PTEN as illustrative models,” Nature Reviews Cancer, vol. 7, no. 1, pp. 35–45, 2007.
[87]  A. Miyauchi, H. Futami, N. Hai et al., “Two germline missense mutations at codons 804 and 806 of the RET proto-oncogene in the same allele in a patient with multiple endocrine neoplasia type 2B without codon 918 mutation,” Japanese Journal of Cancer Research, vol. 90, no. 1, pp. 1–5, 1999.
[88]  F. H. Menko, R. B. Van Der Luijt, I. A. J. De Valk et al., “Atypical MEN type 2B associated with two germline RET mutations on the same allele not involving codon 918,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 1, pp. 393–397, 2002.
[89]  K. Frank-Raue, S. Rondot, and F. Raue, “Molecular genetics and phenomics of RET mutations: impact on prognosis of MTC,” Molecular and Cellular Endocrinology, vol. 322, no. 1-2, pp. 2–7, 2010.
[90]  R. Elisei, C. Romei, G. Renzini et al., “The timing of total thyroidectomy in RET gene mutation carriers could be personalized and safely planned on the basis of serum calcitonin: 18 Years experience at one single center,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 2, pp. 426–435, 2012.
[91]  A. Machens, S. Hauptmann, and H. Dralle, “Increased risk of lymph node metastasis in multifocal hereditary and sporadic medullary thyroid cancer,” World Journal of Surgery, vol. 31, no. 10, pp. 1960–1965, 2007.
[92]  C. F. Russell, J. A. Van Heerden, and G. W. Sizemore, “The surgical management of medullary thyroid carcinoma,” Annals of Surgery, vol. 197, no. 1, pp. 42–48, 1983.
[93]  M. K. Walz and P. F. Alesina, “Single access retroperitoneoscopic adrenalectomy (SARA)-one step beyond in endocrine surgery,” Langenbeck's Archives of Surgery, vol. 394, no. 3, pp. 447–450, 2009.
[94]  G. S. K. Lau, B. H. H. Lang, C. Y. Lo et al., “Prophylactic thyroidectomy in ethnic Chinese patients with multiple endocrine neoplasia type 2A syndrome after the introduction of genetic testing,” Hong Kong Medical Journal, vol. 15, no. 5, pp. 326–331, 2009.
[95]  V. Rohmer, G. Vidal-Trecan, A. Bourdelot et al., “Prognostic factors of disease-free survival after thyroidectomy in 170 young patients with a RET germline mutation: a multicenter study of the Groupe Fran?ais d'Etude des Tumeurs Endocrines,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 3, pp. E509–E518, 2011.
[96]  S. I. Sherman, “Advances in chemotherapy of differentiated epithelial and medullary thyroid cancers,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 5, pp. 1493–1499, 2009.
[97]  S. I. Sherman, “Cytotoxic chemotherapy for differentiated thyroid carcinoma,” Clinical Oncology, vol. 22, no. 6, pp. 464–468, 2010.
[98]  S. A. Wells Jr., B. G. Robinson, R. F. Gagel et al., “Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial,” Journal of Clinical Oncology, vol. 30, no. 2, pp. 134–141, 2012.
[99]  M. L. Gild, M. Bullock, B. G. Robinson, and R. Clifton-Bligh, “Multikinase inhibitors: a new option for the treatment of thyroid cancer,” Nature Reviews Endocrinology, vol. 7, no. 10, pp. 617–624, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133