Metallic glasses demonstrate unique properties, including large elastic limit and high strength, which make them attractive for practical applications. Unlike crystalline alloys, metallic glasses, in general, do not exhibit a strain hardening effect, while plastic deformation at room temperature is localized in narrow shear bands. Room-temperature mechanical properties and deformation behavior of bulk metallic glassy samples and the crystal-glassy composites are reviewed in the present paper.
References
[1]
Inoue, A. High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans. JIM 1995, 36, 866–875.
Inoue, A.; Shen, B.; Koshiba, H.; Kato, H.; Yavari, A.R. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater. 2003, 2, 661, doi:10.1038/nmat982.
[7]
Wang, J.; Li, R.; Hua, N.; Zhang, T. Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. J. Mater. Res. 2011, 26(16), 2072–2079, doi:10.1557/jmr.2011.187.
[8]
Amiya, K.; Inoue, A. Fe-(Cr, Mo)-(C, B)-Tm bulk metallic glasses with high, strength and high glass-forming ability. Rev. Adv. Mater. Sci. 2008, 18, 27.
[9]
Louzguine, D.V.; Inoue, A. Structural and thermal investigations of a high-strength Cu-Zr-Ti-Co bulk metallic glass. Philos. Mag. Lett. 2003, 83, 191–196, doi:10.1080/0950083031000066126.
[10]
Inoue, A.; Yamaguchi, H.; Zhang, T.; Masumoto, T. Al-La-Cu amorphous alloys with a wide supercooled liquid region. Mater. Trans. JIM 1990, 31, 104–109.
[11]
Zhang, W.; Inoue, A. Synthesis, thermal stability and mechanical properties of Cu-based bulk glassy alloys. World Bulk Met. Glass. Compos. 2007, 201–230.
[12]
Inoue, A.; Zhang, W.; Saida, J. Synthesis and fundamental properties of Cu-based bulk glassy alloys in binary and multi-component systems. Mater. Trans. 2004, 4, 1153–1162.
[13]
Inoue, A.; Zhang, W.; Zhang, T.; Kurosaka, K. Formation and mechanical properties of Cu-Hf-Ti bulk glassy alloys. J. Mater. Res. 2001, 16, 2836–2844, doi:10.1557/JMR.2001.0391.
[14]
Inoue, A.; Zhang, W.; Zhang, T.; Kurosaka, K. High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater. 2001, 49, 2645–2652, doi:10.1016/S1359-6454(01)00181-1.
[15]
Zhang, W.; Inoue, A. High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu-Zr-Ag ternary system. J. Mater. Res. 2006, 21, 234–241, doi:10.1557/jmr.2006.0020.
[16]
Kim, K.B.; Das, J.; Lee, M.H.; Yi, S.; Fleury, E.; Zhang, Z.F.; Wang, W.H.; Eckert, J. Propagation of shear bands in a Cu47.5Zr47.5Al5 bulk metallic glass. J. Mater. Res. 2008, 23, 6–12, doi:10.1557/JMR.2008.0025.
[17]
Inoue, A.; Zhang, W. Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys. Mater. Trans. 2002, 43, 2921–2925, doi:10.2320/matertrans.43.2921.
[18]
Zhang, Q.; Zhang, W.; Xie, G.; Inoue, A. Glass-forming ability and mechanical properties of the ternary Cu-Zr-Al and quaternary Cu-Zr-Al-Ag bulk metallic glasses. Mater. Trans. 2007, 48, 1626–1630, doi:10.2320/matertrans.MJ200704.
[19]
Zhang, W.; Inoue, A. Formation and mechanical strength of new Cu-based bulk glassy alloys with large supercooled liquid region. Mater. Trans. 2004, 45, 1210–1213, doi:10.2320/matertrans.45.1210.
[20]
Zhang, Q.; Zhang, W.; Inoue, A. Bulk metallic glass formation near a quaternary Cu-Zr-Ti-Al eutectic point. Mater. Trans. 2006, 47, 2804–2807, doi:10.2320/matertrans.47.2804.
Bhatt, J.; Wu, J.; Xia, J.; Wand, Q.; Dong, C.; Murty, B.S. Optimization of bulk metallic glass forming compositions in Zr-Cu-Al system by thermodynamic modeling. Intermetallics 2007, 15, 716–721, doi:10.1016/j.intermet.2006.10.018.
[23]
Zhang, W.; Inoue, A. Cu-based bulk glass formation in the Cu-Zr-Ga alloy system and their mechanical properties. Mater. Trans. 2004, 45, 532–535, doi:10.2320/matertrans.45.532.
[24]
Men, H.; Fu, J.; Ma, C.; Pang, S.; Zhang, T. Bulk glass formation in ternary Cu-Zr-Ti system. J. Univ. Sci. Technol. Beijing 2007, 14, 19, doi:10.1016/S1005-8850(07)60100-5.
[25]
Chen, D.; Takeuchi, A.; Inoue, A. Gd-Co-Al and Gd-Ni-Al bulk metallic glasses with high glass forming ability and good mechanical properties. Mater. Sci. Eng. 2007, 457, 226–230, doi:10.1016/j.msea.2006.12.028.
[26]
Chen, D.; Takeuchi, A.; Inoue, A. Gd-Ni-Al bulk glasses with great glass-forming ability and better mechanical properties. J. Mater. Sci. 2007, 42, 8662–8666, doi:10.1007/s10853-007-1830-4.
[27]
Inoue, A.; Zhang, T.; Masumoto, T. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater. Trans. JIM 1989, 30, 965–972.
[28]
Inoue, A.; Kato, A.; Zhang, T.; Kim, S.; Masumoto, T. Mg-Cu-Y amorphous alloys with high mechanical strengths produced by metallic mold casting method. JIM 1991, 32, 609–616.
[29]
Park, E.S.; Chang, H.J.; Kim, D.H. Mg-rich Mg-Ni-Gd ternary bulk metallic glasses with high compressive specific strength and ductility. J. Mater. Res. 2007, 22, 334–338, doi:10.1557/jmr.2007.0034.
[30]
Kim, S.G.; Inoue, A.; Masumoto, T. High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region. Mater. Trans. JIM 1990, 31, 929–934.
[31]
Inoue, A.; Zhang, T.; Masumoto, T. Zr-Al-Ni amorphous alloys with high class transition temperature and significant supercooled liquid region. Mater. Trans. JIM 1990, 31, 177–183.
[32]
Yokoyama, Y.; Yamasaki, T.; Liaw, P.K.; Inoue, A. Relations between the thermal and mechanical properties of cast Zr-TM-Al (TM: Cu, Ni, or Co) bulk glassy alloys. Mater. Trans. 2007, 48, 1846–1849, doi:10.2320/matertrans.MJ200717.
[33]
Wada, T.; Zhang, T.; Inoue, A. Formation, thermal stability and mechanical properties in Zr-Al-Co bulk glassy alloys. JIM 2002, 43, 2843–2846, doi:10.2320/matertrans.43.2843.
[34]
Yokoyama, Y.; Kobayashi, A.; Fukaura, K.; Inoue, A. Oxygen embrittlement and effect of the addition of Ni element in a bulk amorphous Zr-Cu-Al alloy. Mater. Trans. 2002, 43, 571–574, doi:10.2320/matertrans.43.571.
[35]
Yokoyama, Y.; Liaw, P.K.; Nishijima, M.; Hiraga, K.; Buchanan, R.A.; Inoue, A. Fatigue-strength enhancement of cast Zr50Cu40Al10 glassy alloys. Mater. Trans. 2006, 47, 1286–1293, doi:10.2320/matertrans.47.1286.
[36]
Yokoyama, Y.; Yamasaki, T.; Liaw, P.K.; Inoue, A. Relations between the thermal and mechanical properties of cast Zr-TM-Al (TM: Cu, Ni, or Co) bulk glassy alloys. Evolution of mechanical properties of cast Zr50Cu40Al10 glassy alloys by structural relaxation. Mater. Trans. 2005, 46, 2755–2761, doi:10.2320/matertrans.46.2755.
[37]
Inoue, A.; Zhang, W. New bulk glassy Ni-based alloys with high strength of 3000 MPa. Mater. Trans. 2002, 43, 708–711, doi:10.2320/matertrans.43.708.
[38]
Jing, Q.; Zhang, Y.; Wang, D.; Li, Y. A study of the glass forming ability in Zr-Ni-Al alloys. Mater. Sci. Eng. 2006, 441, 106–111, doi:10.1016/j.msea.2006.08.109.
[39]
Inoue, A.; Zhang, T.; Masumoto, T. Amorphous Zr-Al-TM (TM = Co,Ni,Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans. JIM 1991, 32, 1005–1010.
[40]
Yi, S.; Park, T.G.; Kim, D.H. Ni-based bulk amorphous alloys in the Ni-Ti-Zr-(Si, Sn) system. J. Mater. Res. 2000, 15, 11.
Koshiba, H.; Inoue, A. Preparation and magnetic properties of Co-based bulk glassy alloys. Mater. Trans. 2001, 42, 2572–2575, doi:10.2320/matertrans.42.2572.
[43]
Qin, C.; Zhang, W.; Kimura, H.; Inoue, A. Excellent mechanical properties of Cu-Hf-Ti-Ta bulk glassy alloys containing in situ dendrite Ta-based BCC phase. Mater. Trans. 2004, 45, 2936–2940, doi:10.2320/matertrans.45.2936.
[44]
Zhang, W.; Zhang, Q.; Qin, C.; Inoue, A. Synthesis and properties of Cu-Zr-Ag-Al glassy alloys with high glass-forming ability. Mater. Sci. Eng. 2008, 148, 92–96, doi:10.1016/j.mseb.2007.09.064.
[45]
Inoue, A.; Zhang, T.; Kurosaka, K.; Zhang, W. High strength Cu-based bulk glassy alloys in Cu-Zr-Ti-Be system. Mater. Trans. 2001, 42, 1800–1804, doi:10.2320/matertrans.42.1800.
[46]
Zhang, T.; Kurosaka, K.; Inoue, A. Thermal and mechanical properties of Cu-based Cu-Zr- Ti-Y bulk glassy alloys. Mater. Trans. 2001, 42, 2042–2045, doi:10.2320/matertrans.42.2042.
[47]
Makino, A.; Kubota, T.; Chang, C.; Makabe, M.; Inoue, A. FeSiBP bulk metallic glasses with unusual combination of high magnetization and high glass-forming ability. Mater. Trans. 2007, 48, 3024–3027, doi:10.2320/matertrans.MRP2007198.
[48]
Zhang, W.; Jia, F.; Inoue, A. Formation and properties of new La-based bulk glassy alloys with diameters up to centimeter order. Mater. Trans. 2007, 48, 68–73, doi:10.2320/matertrans.48.68.
[49]
Yuan, G.; Amiya, K.; Inoue, A. Structural-relaxation, glass-forming ability and mechanical properties of Mg-Cu-Ni-Gd alloys. J. NonCryst. Solids 2005, 351, 729–735, doi:10.1016/j.jnoncrysol.2005.01.061.
[50]
Yuan, G.; Zhang, T; Inoue, A. Thermal stability, glass-forming ability and mechanical properties of Mg-Y-Zn-Cu glassy alloys. Mater. Trans 2003, 44, 2271–2275, doi:10.2320/matertrans.44.2271.
[51]
Inoue, A.; Zhang, W.; Zhang, T. Thermal stability and mechanical strength of bulk glassy Ni-Nb-Ti-Zr alloys. Mater. Trans. 2002, 43, 1952–1956, doi:10.2320/matertrans.43.1952.
[52]
Shen, B.; Inoue, A. Glass transition behavior and mechanical properties of Ni-Si-B-based glassy alloys. Mater. Trans. 2003, 44, 1425–1428, doi:10.2320/matertrans.44.1425.
[53]
Arai, K.; Zhang, W.; Jia, F.; Inoue, A. Synthesis and thermal stability of new Ni-based bulk glassy alloy with excellent mechanical properties. Mater. Trans. 2006, 47, 2358–2362, doi:10.2320/matertrans.47.2358.
[54]
Kim, J.H.; Park, J.S.; Lim, H.K.; Kim, W.T.; Kim, D.H. Heating and cooling rate dependence of the parameters representing the glass forming ability in bulk metallic glasses. J. NonCryst. Solids 2005, 351, 1433–1440, doi:10.1016/j.jnoncrysol.2005.03.020.
[55]
Liu, L.; Inoue, A.; Zhang, T. Formation of bulk Pd-Cu-Si-P glass with good mechanical properties. Mater. Trans. 2005, 46, 376–378, doi:10.2320/matertrans.46.376.
[56]
Takenaka, K.; Wada, T.; Nishiyama, N.; Kimura, H.; Inoue, A. New Pd-based bulk glassy alloys with high glass-forming ability and large supercooled liquid region. Mater. Trans. 2005, 46, 1720–1724, doi:10.2320/matertrans.46.1720.
[57]
Inoue, A.; Nishiyama, N.; Kimura, H. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. Trans. JIM 1997, 38, 179–183.
[58]
Zhang, T.; Inoue, A. Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater. Trans. JIM 1998, 39, 1001–1006.
[59]
Wada, T.; Zhang, T.; Inoue, A. Formation and high mechanical strength of bulk glassy alloys in Zr-Al-Co-Cu system. Mater. Trans. 2003, 44, 1839–1844, doi:10.2320/matertrans.44.1839.
[60]
Saida, J.; Kato, H.; Deny, A.; Setyawan, H.; Yoshimi, K.; Inoue, A. Deformation-induced nanoscale dynamic transformation Studies in Zr-Al-Ni-Pd and Zr-Al-Ni-Cu Bulk Metallic Glasses. Mater. Trans. 2007, 48, 1327–1335, doi:10.2320/matertrans.MF200615.
[61]
Yokoyama, Y.; Inoue, A. Compositional dependence of thermal and mechanical properties of quaternary Zr-Cu-Ni-Al bulk glassy alloys. Mater. Trans. 2007, 48, 1282–1287, doi:10.2320/matertrans.MF200622.
[62]
Zhang, Q.S.; Zhang, W.; Louzguine-Luzgin, D.V.; Inoue, A. High glass-forming ability and unusual deformation behavior of new Zr-Cu-Fe-Al bulk metallic glasses. Mater. Sci. Forum 2010, 654–656, 1042–1045.
[63]
Conner, R.D.; Li, Y.; Nix, W.D.; Johnson, W.L. Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater. 2004, 52, 2429–2434, doi:10.1016/j.actamat.2004.01.034.
[64]
Donovan, P.E.; Stobbs, W.M. The structure of shear bands in metallic glasses. Acta Metall. 1981, 29, 1419–1436, doi:10.1016/0001-6160(81)90177-2.
[65]
Chen, H.S. Plastic flow in metallic glasses under compression. Scr. Metar. 1973, 7, 931–935, doi:10.1016/0036-9748(73)90143-9.
[66]
Mear, F.O.; Wada, T.; Louzguine-Luzgin, D.V.; Inoue, A. Highly inhomogeneous compressive plasticity in nanocrystal-toughened Zr-Cu-Ni-Al bulk metallic glass. Philos. Mag. Lett. 2009, 89, 276–281, doi:10.1080/09500830902817861.
[67]
Yavari, A.R.; Lewandowski, J.J.; Eckert, J. Mechanical properties of bulk metallic glasses. MRS Bull. 2007, 32, 635–638, doi:10.1557/mrs2007.125.
[68]
Pan, J.; Chan, K.C.; Chena, Q.; Liu, L. Enhanced plasticity by introducing icosahedral medium-range order in ZrCuNiAl metallic glass. Intermetallics 2012, 24, 79–83, doi:10.1016/j.intermet.2012.01.006.
[69]
Chen, N.; Louzguine-Luzgin, D.V.; Xie, G.Q.; Wada, T.; Inoue, A. Influence of minor Si addition on glass forming ability and mechanical properties of Pd40Ni40P20 alloy. Acta Mater. 2009, 57, 2775–2780, doi:10.1016/j.actamat.2009.02.028.
[70]
Chen, N.; Pan, D.; Louzguine-Luzgin, D.V.; Xie, G.Q.; Chen, M.W.; Inoue, A. Improved thermal stability and ductility of flux-treated Pd40Ni40Si4P16 BMG. Scr. Mater. 2010, 62, 17–20, doi:10.1016/j.scriptamat.2009.09.013.
[71]
Zhang, Q.S.; Zhang, W.; Xie, G.Q.; Louzguine-Luzgin, D.V.; Inoue, A. Stable flowing of localized shear bands in soft bulk metallic glasses. Acta Mater. 2010, 58, 904–909, doi:10.1016/j.actamat.2009.10.005.
[72]
Kato, H.; Saida, J.; Inoue, A. Influence of hydrostatic pressure during casting on as cast structure and mechanical properties in Zr65Al7.5Ni10Cu17.5 ? xPdx (x= 0, 17.5) alloys. Scr. Mater. 2004, 51, 1063–1068, doi:10.1016/j.scriptamat.2004.08.004.
Lewandowski, J.J.; Wang, W.H.; Greer, A.L. Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 2005, 85, 77, doi:10.1080/09500830500080474.
[75]
Madge, S.V.; Louzguine-Luzgin, D.V.; Lewandowski, J.J.; Greer, A.L. Toughness, extrinsic effects and Poisson’s ratio of bulk metallic glasses. Acta Mate. 2012, 60, 4800–4809, doi:10.1016/j.actamat.2012.05.025.
[76]
Louzguine-Luzgin, D.V.; Xie, G.; Zhang, Q.; Inoue, A. Effect of Fe on the glass-forming ability, structure and devitrification behavior of Zr-Cu-Al bulk glass-forming alloys. Philos. Mag. 2010, 90, 1955–1968, doi:10.1080/14786430903571495.
Dalla Torre, F.H.; Dubach, A.; Siegrist, M.E.; L?ffler, J.F. Negative strain rate sensitivity in bulk metallic glass and its similarities with dynamic strain aging effect during deformation. Appl. Phys. Lett. 2006, 89, 091918, doi:10.1063/1.2234309.
[79]
Yu, H.B.; Wang, W.H.; Zhang, J.L.; Shek, C.H.; Bai, H.Y. Statistic analysis of the mechanical behavior of bulk metallic glasses. Adv. Eng. Mater. 2009, 11, 370–375, doi:10.1002/adem.200800380.
Wang, G.; Feng, Q.; Yang, B.; Jiang, W.; Liaw, P.K.; Liu, C.T. Thermographic studies of temperature evolutions in bulk metallic glasses. Intermetallics 2012, 30, 1–11, doi:10.1016/j.intermet.2012.03.022.
[83]
Wang, D.; Li, Y.; Sun, B.B.; Sui, M.L.; Lu, K.; Ma, E. Bulk metallic glass formation in the binary Cu-Zr system. Appl. Phys. Lett. 2004, 84, 4029.
[84]
Yokoyama, Y.; Fujita, K.; Yavari, A.R.; Inoue, A. Correlation between structural relaxation and shear transformation zone volume of a bulk metallic glass. Philos. Mag. Lett. 2009, 89, 322, doi:10.1080/09500830902873575.
Jiang, W.H.; Atzmon, M. Plastic flow of a nanocrystalline/amorphous Al90Fe5Gd5 composite formed by rolling. Intermetallics 2006, 14, 962–965, doi:10.1016/j.intermet.2006.01.013.
[94]
Louzguine-Luzgin, D.V.; Inoue, A. Comparative study of the effect of cold rolling on the structure of Al-RE-Ni-Co (RE = rare-earth metals) amorphous and glassy alloys. J. NonCryst. Solids 2006, 352, 3903–3909, doi:10.1016/j.jnoncrysol.2006.06.022.
[95]
Zhang, Z.F.; He, G.; Zhang, H.; Eckert, J. Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites. Scri. Mater. 2005, 52, 945–949, doi:10.1016/j.scriptamat.2004.12.014.
[96]
Dalla Torre, F.H.; Dubach, A.; Schallibaum, J.; Loffler, J.F. Shear striations and deformation kinetics in highly deformed Zr-based bulk metallic glasses. Acta Mater. 2008, 56, 4635–4646, doi:10.1016/j.actamat.2008.05.021.
Hajlaoui, K.; Stoica, M.; LeMoulec, A.; Charlot, F.; Yavari, A.R. Fe-Nb-B bulk metallic glass with high boron content. Rev. Adv. Mater. Sci. 2008, 18, 23–26.
[99]
Louzguine-Luzgin, D.V.; Vinogradov, A.; Yavari, A.R.; Li, S.; Xie, G.; Inoue, A. On the deformation and fracture behaviour of a Zr-based glassy alloy. Philos. Mag. 2008, 88, 2979–2987, doi:10.1080/14786430802446674.
[100]
Pampillo, C.A. Flow and fracture in amorphous alloys. J. Mater. Sci 1975, 10, 1194–1227, doi:10.1007/BF00541403.
[101]
Lewandowski, J.J.; Greer, A.L. Temperature rise at shear bands in metallic glasses. Nat. Mater. 2006, 5, 15–18, doi:10.1038/nmat1536.
[102]
Yang, B.; Morrison, M.L.; Liaw, P.P.K.; Buchanan, R.A.; Wang, G.; Liu, C.T.; Denda, M. Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett 2005, 86, 141904–141907, doi:10.1063/1.1891302.
[103]
Chen, N.; Louzguine-Luzgin, D.V.; Xie, G.Q.; Inoue, A. Nanoscale wavy fracture surface of a Pd-based bulk metallic glass. Appl. Phys. Lett. 2009, 94, 131906, doi:10.1063/1.3109797.
[104]
Hofmann, D.C.; Suh, J.Y.; Wiest, A.; Duan, G.; Lind, M.L.; Demetriou, M.D.; Johnson, W.L. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 2008, 451, 1085, doi:10.1038/nature06598.
[105]
Hofmann, D.C.; Suh, J.Y.; Wiest, A.; Lind, M.L.; Demetriou, M.D.; Johnson, W.L. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. PNAS 2008, 105, 20136.
Otsuka, K.; Wayman, C.M. Shape Memory Materials; Otsuka, K., Wayman, C.M., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 27–48.
[108]
Fukuda, T.; Saburi, T.; Chihara, T.; Tsuzuki, Y. Mechanism of B2-B19-B19’ transformation in shape memory Ti-Ni-Cu alloys. Mater. Trans. JIM 1995, 36, 1244–1248.
[109]
Kawashima, A.; Zeng, Y.; Fukuhara, M.; Kurishita, H.; Nishiyama, N.; Miki, H.; Inoue, A. Mechanical properties of a Ni60Pd20P17B3 bulk glassy alloy at cryogenic temperatures. Mater. Sci. Eng. 2008, 498, 475–481, doi:10.1016/j.msea.2008.08.033.
[110]
Tabachnikova, E.D.; Podol’ski, A.V.; Bengus, V.Z.; Smirnov, S.N.; Luzgin, D.V.; Inoue, A. Low-temperature plasticity anomaly in the bulk metallic glass Zr64.13Cu15.75Ni10.12Al10. Low Temp. Phys. 2008, 34, 675–677, doi:10.1063/1.2967517.
[111]
Louzguine-Luzgin, D.V.; Vinogradov, A.; Li, S.; Kawashima, A.; Xie, G.; Yavari, A.R.; Inoue, A. Deformation and fracture behavior of metallic glassy alloys and glassy-crystal composites. Metall. Mater. Trans. 2011, 42A, 1504–1510.
[112]
Vinogradov, A.; Lazarev, A.; Louzguine-Luzgin, D.V.; Yokoyama, Y.; Li, S.; Yavari, A.R.; Inoue, A. Propagation of shear bands in metallic glasses and transition from serrated to non-serrated plastic flow at low temperatures. Acta Mater. 2010, 58, 6736, doi:10.1016/j.actamat.2010.08.039.
[113]
Woodford, D.A. Strain-rate sensitivity as a measure ductility. Trans. Am. Soc. Met. 1969, 62, 291–293.
[114]
Hufnagel, T.; Jiao, C.; Li, T.; Xing, Y.; Ramesh, L.Q. Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 2002, 17, 1441, doi:10.1557/JMR.2002.0214.
[115]
Dalla Torre, F.H.; Dubach, A.; Siegrist, M.; L?ffler, J.F. Shear striations and deformation kinetics in highly deformed Zr-based bulk metallic glasses. Appl. Phys. Lett. 2006, 89, 091918, doi:10.1063/1.2234309.
[116]
Liu, F.X.; Gao, Y.F.; Liaw, P.K. Rate-dependent deformation behavior of Zr-based metallic-glass coatings examined by nanoindentation. Metall. Mater. Trans. 2008, 8, 1862–1867.
[117]
Pan, D.; Chen, M.W. Rate-change instrumented indentation for measuring strain rate sensitivity. J. Mater. Res. 2009, 4, 1466–1470.
[118]
González, S.; Xie, G.Q.; Louzguine-Luzgin, D.V.; Perepezko, J.H.; Inoue, A. Deformation and strain rate sensitivity of a Zr-Cu-Fe-Al metallic glass. Mater. Sci. Eng. 2011, 528, 3506–3512, doi:10.1016/j.msea.2011.01.049.
[119]
Song, S.X.; Bei, H.; Wadsworth, J.; Nieh, T.G. Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics 2008, 16, 813, doi:10.1016/j.intermet.2008.03.007.
[120]
Dalla Torre, F.H.; Dubach, A.; Nelson, A.; L?ffler, J.F. Temperature, strain and strain rate dependence of serrated flow in bulk metallic glasses. Mater. Trans. 2007, 48, 1774, doi:10.2320/matertrans.MJ200782.
[121]
Dalla Torre, F.H.; Dubach, A.; Siegrist, M.; L?ffler, J.F. Negative strain-rate sensitivity in bulk metallic glass and its similarities with the dynamic strain-aging effect during deformation. Appl. Phys. Lett. 2006, 89, 091918, doi:10.1063/1.2234309.
[122]
Trichy, G.R.; Scattergood, R.O.; Koch, C.C.; Murty, K.L. Influence of experimental parameters on the plastic flow curve obtained by ball indentation testing. Intermetallics 2005, 53, 1461.
[123]
Hajlaoui, K.; Yavari, A.R.; Doisneau, B.; LeMoulec, A.; Botta, W.J.F.; Vaughan, G.; Greer, A.L.; Inoue, A.; Zhang, W.; Kvick, A. Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scr. Mater. 2006, 54, 1829–1834, doi:10.1016/j.scriptamat.2006.02.030.
[124]
Guo, H.; Yan, P.F.; Wang, Y.B.; Tan, J.; Zhang, Z.F.; Sui, M.L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater. 2007, 6, 735, doi:10.1038/nmat1984.
[125]
Louzguine-Luzgin, D.V.; Yavari, A.R.; Xie, G.Q.; Madge, S.; Li, S.; Saida, J.; Greer, A.; Inoue, A. Tensile deformation behaviour of Zr-based glassy alloys. Philos. Mag. Lett. 2010, 90, 139, doi:10.1080/09500830903485544.
[126]
Guo, H.; Yan, P.P.F.; Wang, Y.B.; Tan, J.; Zhang, Z.F.; Sui, M.L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater. 2007, 6, 735–739, doi:10.1038/nmat1984.
[127]
Georgarakis, K.; Aljerf, M.; Li, Y.; Lemoulec, A.; Charlot, F.; Yavari, A.R.; Chornokhvostenko, K.; Tabachnikova, E.; Evangelakis, G.A.; Miracle, D.B.; Greer, A.L.; Zhang, T. Shear band melting and serrated flow in metallic glasses. Appl. Phys. Lett. 2008, 93, 031907.
[128]
Schuh, C.A.; Hufnagel, T.C.; Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 2007, 5, 4067–4109.
[129]
Lewandowski, J.J.; Shazly, M.; Nouri, A.S. Intrinsic and extrinsic toughening of metallic glasses. Scr. Mater. 2008, 54, 337–341.
[130]
Caron, A.; Kawashima, A.; Fecht, H.J.; Louzguine-Luzguin, D.V.; Inoue, A. On the anelasticity and strain induced structural changes in a Zr-based bulk metallic glass. Appl. Phys. Lett. 2011, 99, 171907, doi:10.1063/1.3655999.
[131]
Louzguine-Luzgin, D.V.; Xie, G.; Zhang, Q.; Inoue, A. Cooling rate, structure, thermal stability and crystallization behaviour of Cu-based bulk glass-forming alloys. J. Phys. 2009, 144, 012047.
[132]
Cavaille, J.Y.; David, L.; Perez, J. Relaxation phenomena in non crystalline solids: Case of polymeric materials. Mater. Sci. Forum 2001, 366–368, 499–545.
[133]
Pelletier, J.M.; Louzguine-Luzgin, D.V.; Li, S.; Inoue, A. Elastic and viscoelastic properties of glassy, quasicrystalline and crystalline phases in Zr65Cu5Ni10Al7.5Pd12.5 alloys. Acta Mater. 2011, 59, 2797–2806, doi:10.1016/j.actamat.2011.01.018.
[134]
Ke, H.B.; Wen, P.; Peng, H.L.; Wang, W.H.; Greer, A.L. Homogeneous deformation of metallic glass at room temperature reveals large dilatation. Scr. Mater. 2011, 64, 966–969, doi:10.1016/j.scriptamat.2011.01.047.
[135]
Lee, S.C.; Lee, C.M.; Yang, J.W.; Lee, J.C. Microstructural evolution of an elastostatically compressed amorphous alloy and its influence on the mechanical properties. Scr. Mater. 2008, 58, 591, doi:10.1016/j.scriptamat.2007.11.036.
[136]
Park, K.W.; Lee, C.M.; Wakeda, M.; Shibutani, Y.; Falk, M.L.; Lee, J.C. Elastostatically induced structural disordering in amorphous alloys. Acta Mater. 2008, 56, 5440, doi:10.1016/j.actamat.2008.07.033.