In this paper, the mechanical properties and tensile failure mechanism of two novel bio-absorbable as-cast Mg-Zn-Se and Mg-Zn-Cu alloys for endovascular medical applications are characterized. Alloys were manufactured using an ARC melting process and tested as-cast with compositions of Mg-Zn-Se and Mg-Zn-Cu, being 98/1/1 wt.% respectively. Nanoindentation testing conducted at room temperature was used to characterize the elastic modulus (E) and surface hardness (H) for both the bare alloys and the air formed oxide layer. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties that can increase their biocompatibility, degradation kinetics, and the potential for medical device creation.
References
[1]
Persaud-Sharma, D.; McGoron, A. Biodegradable magnesium alloys: A review of material development and applications. J. Biomimetics Biomater. Tissue Eng. 2012, 12, 25–39, doi:10.4028/www.scientific.net/JBBTE.12.25.
[2]
Saito, S. New horizon of bioabsorbable stent. Catheter Cardiovasc. Interv. 2005, 66, 595–596, doi:10.1002/ccd.20590.
[3]
Moravej, M.; Mantovani, M. Biodegradable metals for cardiovascular stent application: Interest and new opportunities. Int. J. Mol. Sci. 2011, 12, 4250–4270, doi:10.3390/ijms12074250.
[4]
Erne, P.; Schier, M.; Resink, T.J. The road to bioabsorbable stents: Reaching clinical reality? Cardiovasc. Intervent. Radiol. 2006, 29, 11–16, doi:10.1007/s00270-004-0341-9.
[5]
Colombo, A.; Karvouni, E. Biodegradable stents: Fulfilling the mission and stepping away. Circulation 2000, 102, 371–373, doi:10.1161/01.CIR.102.4.371.
[6]
Peuster, M.; Wohlsein, P.; Brugmann, M.; Ehlerding, M.; Seidler, K.; Fink, C.; Brauer, H.; Fischer, A.; Hausdorf, G. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 2001, 86, 563–569, doi:10.1136/heart.86.5.563.
[7]
Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564, doi:10.1557/JMR.1992.1564.
[8]
Poncin, P.; Proft, J. Stent Tubing: Understanding the Desired Attributes. In Proceedings from the Materials & Processes for Medical Devices Conference, Anaheim, CA, USA, September 8–10, 2003; ASM International: Material Park, OH, USA, 2003.
[9]
Merker, J.; Lupton, D.; Topfer, M.; Knake, H. High temperature mechanical properties of the platinum group metals. Platinum Met. Rev. 2001, 45, 74–82.
[10]
Gupta, M.; Sahron, N.M.L. Magnesium, Magnesium Alloys, and Magnesium Composites: A Guide; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 1, pp. 120–150.
[11]
Niraj, N.; Buravalla, V.; Ramamurty, U. Effect of mechanical cycling on the stress-strain response of a martensitic Notinol shape memory alloy. Mater. Sci. Eng. A 2009, 525, 60–67, doi:10.1016/j.msea.2009.07.038.
[12]
Johnson Matthey Medical Components. Nitinol Technical Properties, Available online: http://jmmedical.com/resources/221/Nitinol-Technical-Properties.html#nitinol-transformation-properties (accessed on 29 November 2012).
[13]
Kasemo, B.; Lausmaa, J. Surface science aspects on inorganic biomaterials. Crit. Rev. Biocompat. 1986, 2, 335–330.
[14]
Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical implants: Corrosion and its prevention-a review. Recent Pat. Corros. Sci. 2010, 2, 40–54, doi:10.2174/1877610801002010040.
[15]
Persson, D.H.E.; Jacobson, S.; Hogmark, S. The influence of phase transformations and oxidation on the galling resistance and low friction behavior of laser processed Co-based alloy. Wear 2003, 254, 1134–1140, doi:10.1016/S0043-1648(03)00325-9.
[16]
Meyers, M.; Chawla, K. Mechanical Behaviors of Materials, 2nd ed.; Cambridge University Press : New York, NY, USA, 1999; pp. 162–168.
[17]
Persaud-Sharma, D.; Munroe, N.; McGoron, A. Electro and magneto-electropolished surface micro-patterning on binary and ternary Nitinol. Trends Biomater. Artif. Organs. 2012, 26, 74–85.
[18]
Stauss, S.; Schwaller, P.; Bucaille, J.-L.; Rabe, R.; Rohr, L.; Michler, J.; Blank, E. Determining the stress-strain behavior of small devices by nanoindentation in combination with inverse methods. Microelectron. Eng 2003, 67–68, 818–825, doi:10.1016/S0167-9317(03)00192-8.
[19]
Wang, L.; Shinohara, T.; Zhang, B.P. XPS study of the surface chemistry on AZ31and AZ91 magnesium alloys in dilute NaCl solution. Appl. Surf. Sci. 2010, 256, 5807–5812, doi:10.1016/j.apsusc.2010.02.058.
[20]
Revie, R.W.; Uhlig, H.H. Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering; John Wiley and Sons: Hoboken, NJ, USA, 2008; Volume 4, pp. 125–165.
[21]
Grote, K.H.; Antonsson, E. Handbook of Mechanical Engineering; Springer: New York, NY, USA, 2010; Volume 10, pp. 530–540.
[22]
Shrivastava, S. Medical Device Materials. In Proceedings from the Materials & Processes for Medical Devices Conference, Anaheim, CA, USA, September 8–10, 2003; ASM International: Material Park, OH, USA, 2003; pp. 69–74.
[23]
Liu, B.; Zhang, L.; Gao, H. Poisson ratio can play an important role in mechanical properties of biocomposites. Mech. Mater. 2006, 38, 1128–1142, doi:10.1016/j.mechmat.2006.02.002.
[24]
Zhang, H.; Wang, W.; Wei, Y.; Li, J.; Wang, J. Fatigue fracture mechanism of AZ31B magnesium alloy and its welded joint. Trans. Nonferrous Met. Soc. China 2011, 21, 1225–1233, doi:10.1016/S1003-6326(11)60846-7.
[25]
Zhiyong, Y.; Yuhua, Z.; Weili, C.; Jinshan, Z.; Yinghui, W. Effect of Cu addition on microstructure and properties of Mg-10Zn-5Al-0.1Sb high zinc magnesium alloy. China Foundry 2012, 9, 43–47.
[26]
Chen, Z. Heat-Resistant Magnesium Alloy; Chemical Industry Press: Beijing, China, 2006; pp. 109–115.