Iron-boron based bulk metallic glasses (BMG) development has been initiated using Fe 40Ni 38Mo 4B 18 as precursor. Addition of zirconium up to 10 atomic % along with the reduction of Ni proportion improves the glass forming ability (GFA), which is optimum when Ni is suppressed in the alloy. However melting instability occurred during the materials fabrication resulting in the formation of residual crystalline phases closely related to the amorphous phase. Microstructure study shows an evolution from amorphous structure to peculiar acicular structure, particularly for Fe 50Ni 16Mo 6B 18Zr 10, suggesting the amorphous structure as interconnected atomic sheets like “atomic mille feuilles” whose growth affects the alloys’ GFA.
References
[1]
Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 269–306.
[2]
Peker, A. Liquidmetal inventor: Apple will use it in a “breakthrough product”. Available online: http://www.businessinsider.com/liquidmetal-inventor-atakan-peker-apple-will-use-it-in-a-breakthrough-product-2012-5 (accessed on 1 May 2012).
[3]
Inoue, A.; Zhang, T.; Koshiba, H. New bulk amorphous Fe-(Co,Ni)-M-B (M = Zr, Hf, Nb, Ta, Mo, W) alloys with good soft magnetic properties. J. Appl. Phys. 1998, 8, 6326–6328, doi:10.1063/1.367811.
[4]
Smith, C.S. A History of Martensite: Early Ideas on the Structure of Steel. In Martensite, A tribute to Morris Cohen; Olson, G.B., Owen, W.S., Eds.; ASM International: Materials Park, OH, USA, 1992; pp. 21–39.
[5]
Ma, L.; Wang, L.; Zhang, T.; Inoue, A. Fe-based metallic glass with significant supercooled liquid region over 90 K. J. Mat. Sci. Lett. 1998, 17, 1893–1895, doi:10.1023/A:1006691906242.
[6]
Mizgalski, K.P.; Inal, O.T.; Yost, F.G.; Karnowsky, M.M. Characterization of crystallization in Metglas 2826 MB alloy. J. Mat. Sci. 1981, 16, 3357–3364, doi:10.1007/BF00586297.
[7]
Aboki, A.M.; Harmelin, M.; Bouquet, G.; Portier, R. Internal friction evolution during crystallization of Fe40Ni38Mo4B18 amorphous alloys. Scr. Metall. Mater. 1990, 24, 1873–1878, doi:10.1016/0956-716X(90)90043-G.
[8]
Jones, H. Splat cooling and metastable phases. Rep. Prog. Phys. 1973, 36, 1427–1497, doi:10.1088/0034-4885/36/11/002.
[9]
Aboki, T.M.A.; Baudu, S.; Robbiola, L.; Ochin, P. Formation of sigma-like Mo-rich ternary phase in Fe40Ni38Mo4B18 glass forming alloy. Scr. Mater. 2000, 43, 453–458, doi:10.1016/S1359-6462(00)00426-7.
[10]
Jones, H. reported in this review [8] a paper of Sarjeant and Roy (1968), page 1468, that derived a simple expression for critical cooling rate for amorphous formation dT/dt ≈ KRT2/ηV from the Turnbull’s formalism of nucleation and growth: K, constant; R, gas constant; T, melting temperature; η, viscosity; V, molar volume of the liquid. This expression is in agreement with the experiment that shows that the critical cooling rate decreases with the increase of the viscosity.
[11]
Inoue, A. Bulk Amorphous Alloys. In Amorphous and Nano-Crystalline Materials Preparation, Properties, and Applications; Inoue, A., Hashimoto, K., Eds.; Springer-Verlag: Berlin, Germany, 2001; pp. 1–48.
[12]
Boettinger, W.J. The Effect of Alloy Constitution and Crystallization Kinetics on the Formation of Metallic Glass. In Proceedings of the International Conference on Rapidly Quenched Metals, Sendai, Japan, 1981; pp. 99–102.
[13]
Aboki, A.B.; Brisset, F.; Souron, J.P.; Dezellus, A.; Plaindoux, P. Microstructure studies of Zr65Cu17.5Al7.5Ni10 and Zr65Cu15Al10Ni10 glass forming alloys: Phase morphologies and undercooled melt solidification. Intermetallics 2008, 16, 615–624, doi:10.1016/j.intermet.2008.01.014.
[14]
Sasaki, S.; Sakaki, Y.; Takahara, A.; Kajiyama, T. Microscopic lamellar organization in high-density polyethylene banded spherulites studied by scanning probe microscopy. Polymer 2002, 43, 3441–3446, doi:10.1016/S0032-3861(02)00158-1.
[15]
Zaluska, A.; Matyja, H. Rapid heating of Fe-Si-B metallic glass. J. Mat. Sci. Lett. 1983, 2, 729–732, doi:10.1007/BF00720544.
Mei, Y.; Kiravittaya, S.; Harazim, S.; Schmidt, O.G. Principles and applications of micro and nanoscale wrinkles. Mat. Sci. Eng. R 2010, 70, 209–224, doi:10.1016/j.mser.2010.06.009.
[20]
Bensimon, D.; Mutz, M.; Gulik, T. Wrinkling transition in polymerized membranes. Phys. A 1993, 194, 190–198.
[21]
Lecieux, Y.; Bouzidi, R. Numerical wrinkling prediction of thin hyperelastic structures by direct energy minimization. Adv. Eng. Softw. 2012, 50, 57–68, doi:10.1016/j.advengsoft.2012.02.010.
Nayyar, V.; Ravi-Chandar, K.; Huang, R. Stretch-induced stress patterns and wrinkles in hyperelastic thin sheets. Int. J. Solids Struct. 2011, 48, 3471–3483, doi:10.1016/j.ijsolstr.2011.09.004.
[24]
Groenewold, J. Wrinkling of plates coupled with soft elastic media. Phys. A 2001, 298, 32–45.
[25]
Mougin, K.; Vonna, L.; Vidal, L.; Haidara, H. Spontaneous growth of self-relief wrinkles in freely floating lipid-based nanomembranes, formed on a reactive bath of polyoxometalate aqueous solution. J. Colloid Interface Sci. 2010, 345, 377–383, doi:10.1016/j.jcis.2010.01.091.
[26]
Yu, C.; Jiang, H. Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications. Thin Solid Films 2010, 519, 818–822, doi:10.1016/j.tsf.2010.08.106.
[27]
Zhu, L.; Susaca, D.; Teoa, M.; Wong, K.C.; Wong, P.C.; Parsons, R.R.; Bizzotto, D.; Mitchell, K.A.R. Investigation of CoS 2-based thin films as model catalysts for the oxygen reduction reaction. J. Catal. 2008, 258, 235–242.
[28]
Amini, S.; Abbaschian, R. Synthesis of curved graphene layers on metallic dendrites. Mat. Lett. 2012, 88, 129–131, doi:10.1016/j.matlet.2012.08.039.
[29]
Csákberényi-Malasics, D.; Rodriguez-Blanco, J.D.; Kis, V.K.; Re?nik, A.; Liane, G.; Benning, L.G.; Pósfai, M. Structural properties and transformations of precipitated FeS. Chem. Geol. 2012, 294–295, 249–258.
[30]
Clarke, D.R. Stress generation during high-temperature oxidation of metallic alloys. Curr. Opin. Solid State Mat. Sci. 2002, 6, 237–244, doi:10.1016/S1359-0286(02)00074-8.
[31]
Ueda, M.; McCaldin, J.O.; Shima, R. Crystallization of substrate-confined liquid indium. Thin Solid Films 1982, 98, 241–247, doi:10.1016/0040-6090(82)90407-2.
[32]
Greer, J.R.; de Hosson, J.T.M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mat. Sci. 2011, 56, 654–724, doi:10.1016/j.pmatsci.2011.01.005.
[33]
Huang, Z.Y.; Wong, W.; Suo, Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 2005, 53, 2101–2118, doi:10.1016/j.jmps.2005.03.007.
[34]
Chalmers, B. Principles of Solidification; John Wiley & Sons, Inc: New York, NY, USA, 1964; pp. 162–163.
[35]
Im, S.H.; Huang, R. Wrinkle patterns of anisotropic crystal films on viscoelastic substrates. J. Mech. Phys. Solids 2008, 56, 3315–3330, doi:10.1016/j.jmps.2008.09.011.
[36]
Cerda, E.; Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 2003, 90, 074302, doi:10.1103/PhysRevLett.90.074302.
[37]
Sealy, C. Ripples in graphene: It’s all in the bonds. Mat. Today 2007, 10, 9.
[38]
Czigany, Z.; Hultman, L. Interpretation of electron diffraction patterns from amorphous and fullerene-like carbon allotropes. Ultramicroscopy 2010, 110, 815–819, doi:10.1016/j.ultramic.2010.02.005.
[39]
Choudhary, S.K.; Gupta, A.K. Scanning tunneling microscopy and spectroscopy study of charge inhomogeneities in bilayer graphene. Solid State Commun. 2011, 151, 396–399, doi:10.1016/j.ssc.2010.12.010.